RubyALEE 2 D

AV IVEHI—F DA

TR — . 28 AR475h (Heroku, Inc.)
kol@heroku.com, matz@heroku.com

| heroku

F£106ETAOTSIVIHERKRE

S BHDE

. RubyZ7')\7°|*’Z’/ \ A ~a—RAIZSERIZ3a2 /N1)L
BTO—F9 HHEREZE1E
c WMISRIT7AILAHT-WLVEED T, FIRME AL

« RRICEHE T HE BEA—KFIE>T.A—F9 5/ 1k
T—Rld, EEICIZIS%EETODOME, ENSEEER

AT I ARIIZ. BRAERARA, LV DER

Background
Ruby as a web application dev language

PROGRAMMING

Language

Background
Sample application

arigatobook

Say "®UYAES (arigato) " "Thank you" "Gracias" "Merci" "Danke" "4=dlg|" "gHE" "
words to someoné great!

Say your arigato (thank you) to someone great!

From
To
Stamp
hanamaru 01-001.gif

Message

Create Message

Recent Messages

From To Message Time

Tava 7 Pr 2015-11-02 14:01:05 UTC

Very simple sample application
http://atdot.net/ab/

Backgrounc
Load many libraries

Loaded Gems 91
(Gem = Library)

Loaded Ruby scripts 1,550
Average line number of loaded 140

Ruby scripts

Maximum line number of loaded 2,970
Ruby scripts

Problem
ncreasing loading time

1. Specify loaded scripts
* Tools such as “Bundler” help.
» Some other ideas (out of scope from our research)

2. Read loaded scripts
* Traditional “Disk cache” will help (out of scope)

3. Parse and compile loaded scripts to generate Bytecode
* We need to repeat this process for all of ruby interpreter
* Loading time is important, especially for application
development phase

Problem

Bytecode consumes 15% (20MB)

-

0%

M iseq_setup@compile.c

B rb_iseq_new_with_opt@iseq.c

H heap_assign_page@gc.c
st_init_table_with_size@st.c

W rb_str_buf_new@string.c

B st_update@st.c

B onig_region_resize@regexec.c

W others

10%

20%

30%

40%

50%

1
15,595,764
5,231,136
40,518,400
18,994,480
4,817,252
6,578,736
4,891,968
37,676,810

ncreasing memory consumption

60%

70% 80% 90% 100%

Measured by valgrind/massif

Problem

ncreasing memory on multi-process

* Only small application consume 20MB by bytecodes

* N processes can consumes N times 20MB (or more)

* CoW can help, but not guaranteed
* Shared bytecode data is required

Process

Bytecodes

Independent BCs

Process

BC

(Partialy) Shared BCs

Shared

> Bytecode

Data

Approach

* Goal: Fast load, low memory consumption, non-negative performance
impact loading feature

e Our approach

* Prepare compiled code beforehand
* General idea (so many languages Java, Python, PHP, emacs, ... support)
 Machine dependent compiled data (word size, endian, etc...)

* Related work: Ruby’s case

* mruby generates compiled code
 lkehara’s code compaction
* Some native compilers

Approach
Bytecode dump/load

Ruby script

4

Dump

Compiled
code

4

Load/share

Interpreter process

BC

Reference by mmap() and so on

Design trade-off

* Shareable data reduces loading time and memory consumption

e But introduces indirect accesses, slows down performance

Shareable data

Interpreter process

g BC Access by
table index
BC ——@©
Interpreter process
Access by address BC ' Table — @

Data format

Header

* Iseq (BC), ID, Objects are pointed by index of each lists in each data

Iseq list

ID list

obj

* Objects are serialized by Marhasl (Ruby’s feature)

* Dump machine dependent data (can’t migrate compiled code)

* No verifier (because this file is not for migrations)

Obiject list

mplementation technique
azy loading

* A Ruby script has several bytecodes
* Each scope has own independent bytecode sequence
» Bytecodes are tree data structure (like AST)

* Each bytecode consumes memory resource
* Bytecode header
* Bytecode sequence

Ruby script

4

BC1

BC2

BC3

BC4

BC5

mplementation technique

Lazy loading

* Load bytecodes on demand

Ruby script

4

* Make “unloaded” empty BC
e Points compiled code

* Load bytecode when it is needed

* To execute BC1, empty BC2 and BC3
are created, BC4 and BC5 is not
created completely

Compiled
code

BC1 (loaded)
BC2
BC3
BC4
BC5

BC1

BC2
(Unloaded)

BC3
(Unloaded)

Experiment

e Ubuntu 14.04.2 LTS on VirtualBox on Windows 7
on Intel i5-3380M (2.90GHz) CPU

* 1,400 lines Ruby script
* 100 class definition
* Each class has 3 simple methods
* 401 bytecodes will be generated

* Ruby script and compiled code are already on
memory (not from FS)

e Current implementation copy all data from
compiled code

class CO
def foo
x=y=1z=:hello
p(x, Y, 2)
end
def bar
x=y=z=":hello
p(x, Y, 2)
end
def baz
x=y=z=:hello
p(x, Y, 2)
end
end

Experiment
Load time

Class/method definitions
are execution statements

(Initial) Load Load +
time Execution

Parse+compile 7.05 8.42 1.37
Compiled code 2.22 3.41 1.19
Compiled code (lazy) 0.00 2.06 2.06

(seconds)

(result of repeating 2,000 times)
101 bytecodes (25%) are loaded by lazy load

Experiment
Compiled data

Ruby script lines 1,400 lines
Ruby script size 19,050 bytes
Classes 100 classes
Methods 300 methods
Compiled code 237,536 bytes

Compare with a script x12.5

Experiment
Lazy load

* Run simple sample web application with 10 accesses
* Count loaded bytecodes and executed bytecode

Loaded bytecode Executed bytecode m

30,485 4,698 15.4%

Discussion

* Only “15%"” of bytecodes are needed ...
e Lazy load is good idea

* We can consume loading time for each bytecodes, don’t need to
use shared compiled data

—> We need to consider to use “Compaction techniques”

FEH

e Ruby RV T hEZERIZOV /M)L 12 TO—FT 54
BEZ S
 WMOISRIT7AILHT=NZED DAL LN, FhER (TR
°%B’xl$ﬁ%¥‘§'ét EEO—KNIZE->T. A—K95/01k
—K X, ERIZIEX15%IBETWHIOLDOMNE., ELVWOFER

-1113/ T RET—AREHEEFTH-HIZ. L HF/RIEETHRE
MBFEYBLLENT —FT+—I VB AT ITE,
52 (15%Z1T) AE— L CEBRT 51ZITTEKSES

Thank you for your attention

Koichi Sasada

<kol@heroku.com>

M @

h| heroku i

