
Can you see me?

2008/12/11 Future of Ruby VM - RubyConf2008 1

Future of Ruby VM
Talk about Ruby VM Performance.

Ruby VMの未来，とかなんとか

SASADA Koichi <ko1@rvm.jp>
Department of Creative Informatics,

Graduate School of Science and Technology,
The University of Tokyo

2008/12/11 2Future of Ruby VM - RubyConf2008

Summary of My Talk

“Scaling Ruby (without the Rails)“
Seems Interesting!

“Monkeybars: easy cross platform
GUIs” Also Does!

On My Performance Interesting,
Former is Preferred ☺
Anyone make a Log?

2008/12/11 Future of Ruby VM - RubyConf2008 3

Summary

CRuby/YARV is
NOT a “BEST” Solution

for Ruby VM Performance.

However, CRuby/YARV is
“GOOD” Enough Solution for Us,
the Pragmatic Ruby Programmers,

at least Several Years.
2008/12/11 Future of Ruby VM - RubyConf2008 4

Self Introduction
Recent Report about Me

ko1 - Koichi (Given Name) Sasada (Family Name)
From Japan, 5th RubyConf since 2004, 4th Speach
YARV Developer

Lecturer
Department of Creative Informatics, Graduate School
of Science and Technology, The University of Tokyo.
Lecture: Programming System, but only 3 students
attend

SASADA-lab
If you want to research about Ruby or Virtual Machine,
Systems Software in Japan, please contact me.
2 students are there, but no one want to hack YARV.

2008/12/11 Future of Ruby VM - RubyConf2008 5

6

Caution! (re-re-review)
I canʼt speak English well

If I say strange English, you can see the slide
page
• Or ask another Japanese. They can speak English
well.

• My Slides uses Small Characters (against Takahashi-sanʼs
Presentation Method)

If you have any question, ask me with:
• Japanese (recommended)
• Ruby, C, Scheme, Java, …, Python, Haskell, ...
• Or Easy English

2008/12/11 Future of Ruby VM - RubyConf2008

Agenda

Perspective of Ruby VM Performance
VM Performance Discussion
Our Performance Policy

Introduction of Our Research
Hidden Optimization Techs.
Ricsin Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
MVM Project

Summary
2008/12/11 Future of Ruby VM - RubyConf2008 7

Remember The Evanʼs Classification

JRuby is for Java Programmers
IronRuby is for .Net Programmers
Rubinius is for Ruby Programmers

CRuby is for C Programmers

2008/12/11 Future of Ruby VM - RubyConf2008 8

OK.
Letʼs Talk about the “C”,

The Benefits and Limitation

2008/12/11 Future of Ruby VM - RubyConf2008 9

Evolution of VM Performance
My Prediction

2008/12/11 Future of Ruby VM - RubyConf2008 10

P
er

fo
rm

an
ce

Time / Effort / Money

CRuby

JRuby, IronRuby
Rubinius

We are here

???

Now, CRuby is
Good one

CRuby has
Limitation

Finally, Rubinius
is Best for Ruby’s

Pefromance

Question:
When get here?

Good
at First

Techniques for VM Performance

Simple Optimization Techniques
C-level VM Techniques

Advanced Optimization Techniques
Dynamic Code Generation
• Speed-up using Native Machine code Compiler
• Just in Time Compilation
• Polymorphic Inline Cache
• Selective Inlining
Online Feedback Optimization
• HotSpot JIT Compiler
• Tracing JIT

2008/12/11 Future of Ruby VM - RubyConf2008 11

Pros and Cons of JRuby/IronRuby

Using Awesome VM
Pros.

Many Clever People Working on each VM
No Code is Good Code.
• No Bugs are Generated.
Many Libraries on Each Environments
Easy (?) to Use Parallelization

Cons.
Not Only Focused on Ruby, Semantics Gap
Canʼt Use C Extensions Directly

2008/12/11 Future of Ruby VM - RubyConf2008 12

Pros and Cons of Rubinius

Most of Code is Written in Ruby
Like Java

Pros.
Ruby in Ruby
• Meta-Circular Interpreter
Best Way to Improve Performance in the Long Run
Because They Can Analyze Most of Programs.
Mainly Focus on Ruby

Cons.
Long Way to Get High Performance VM

2008/12/11 Future of Ruby VM - RubyConf2008 13

Pros of “C” Ruby
Portability

Most of Environments have GCC Porting.
Maintainability

Everyone Know C.
Extensibility

Easy to Write Extension with C.
Performance Improvement

Easy to Write Simple (Machine Independent)
Optimization.

2008/12/11 Future of Ruby VM - RubyConf2008 14

Cons (Limitation) of “C” Ruby
C Extension Libraries or Methods written in C

GC Problem
• Conservative Mark & Sweep Stop The World GC
Inlining Problem
• Canʼt Inline C code into Ruby Code
Limitation of Program Analysis

2008/12/11 Future of Ruby VM - RubyConf2008 15

Our Performance Policy

CRuby is Not “Best” Solution but “Good” One
Continue to Improve CRubyʼs Implementation

in C
in Machine Dependent Way

Pragmatic, Practical Selection
at least several years

2008/12/11 Future of Ruby VM - RubyConf2008 16

Keywords for Success

“Embedding”
Parallelization

2008/12/11 Future of Ruby VM - RubyConf2008 17

Introduction of Our Research

To Take Advantage of “C”, Some Projects are
Running

Hidden Optimization Techs on YARV
Ricsin: Mix-in C to Ruby Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
Multi-VM Project

2008/12/11 Future of Ruby VM - RubyConf2008 18

Hidden/Left Optimization Techs

Turned Off on 1.9.1 by Default
Tail call Optimization
Optimization using Unification
Stack Caching

Left Easy Optimization
Efficient Method Caching
Efficient Fiber Implementation using Platform
dependent way such as makecontext()

These Optimizations will be Merged into 1.9.2

2008/12/11 Future of Ruby VM - RubyConf2008 19

Ricsin: Mix-in C to Ruby

Embed a part of C Program into Ruby
Like an RubyInline, but Embed Directly
Usage Example

Use C Libs Directly
Replace All Built-in Classes/Methods
Test Ruby C APIs
Performance Improvement Continuously

2008/12/11 Future of Ruby VM - RubyConf2008 20

Ricsin Notation
def open_fd(path) # Ruby

fd = __C__(%q{
/* C */
return INT2FIX(open(RSTRING_PTR(path), O_RDONLY));

})
raise 'open error' if fd == -1
yield fd

ensure
raise 'close error' if -1 == __C__(%q{

/* C */
return INT2FIX(close(FIX2INT(fd)));

})
end

2008/12/11 Future of Ruby VM - RubyConf2008 21

Ricsin Total View

2008/12/11 Future of Ruby VM - RubyConf2008 22

rcb File
（Ruby+C）

Ricsin
Translator

Makefile C File
(C)

C Build Env.
(C compiler, etc)

so File
(C Extension)

rb File
(Ruby)

Ricsin-Ver
CRubyNeeded for Execution

Load/Exec

Ricsin
Translation and Execution

2008/12/11 Future of Ruby VM - RubyConf2008 23

/* A Part of Generated C Source */
#define v (cfp->lfp[3])
#define r (cfp->lfp[2])
VALUE ricsin_func_1(

rb_control_frame_t *cfp)
{

const VALUE self = cfp->self;
{

/* Embed C Body */
rb_p(self);
return INT2FIX(FIX2INT(v) + 1);

}
return Qnil;

}
#undef v
#undef r

rcb
v = 42
r = __C__(%q{
/* Embed C Body */
rb_p(self); /* show “main” */
return INT2FIX(
FIX2INT(v) + 1);

})
p r #=> show “43”

[ADDR] [INSN] [OPERAND]
0000 putobject 42
0002 setlocal v
0004 opt_call_ricsin <funcptr>
0006 setlocal r
0008 putnil
0009 getlocal r
0011 send :p, 1
0017 leave

Generate

Bytecode Compile Function Call

Built to Extension Library

Ricsin: Evaluation

Performance Evaluation (Not a Usability)
Evaluation Environment

Env.1：Intel Xeon E5335, Linux
Env.2：SPARC T2, SunOS 5.10

Evaluation Items
1. Calling C Function (null call)
2. Example on Iterator
3. Matrix Multiprior

2008/12/11 Future of Ruby VM - RubyConf2008 24

Ricsin
Evaluation of Calling Null Function

C (sec) Ricsin (sec) C/Ricsin
Env.1
（Intel）

0.44 0.05 8.8

Env.2
（SPARC）

4.56 0.44 10.4

2008/12/11 Future of Ruby VM - RubyConf2008 25

Calling Null C Function
Null C Method
Null __C__ Embed

Ricsin
Evaluation: Iterator Optimization

2008/12/11 Future of Ruby VM - RubyConf2008 26

Env.2 (SPARC)Env.1 (Intel)

Rewrite Iterators with Ricsin
C: Current Iterator
Ricsin: Rewriting with __Ccont__
Ruby: Rewriting with Pure Ruby

Ricsin
Evaluation: Matrix Multiplier

Matrix Multiplier with Fixnum Elements
Replace 12 Lines Ruby Code to 36 Lines C
Code Directly

2008/12/11 Future of Ruby VM - RubyConf2008 27

Ruby (sec) Ricsin (sec) Ruby/Ricsin
Env.1
（Intel）

10.57 0.57 20.33

Env.2
（SPARC）

85.31 6.73 12.68

Ricsin

svn co
http://svn.ruby-lang.org/

repos/ruby/branches/ricsin

2008/12/11 Future of Ruby VM - RubyConf2008 28

Ruby to C AOT Compiler

Translate Ruby Script to C Source Code at
Ahead of Time

Compile Ruby to Bytecode
Translate Bytecode to C Source Code

Performance Improvement by
Eliminate VM Instruction Dispatch
Optimization by C Compiler
Eliminate Parse/Compile Time

2008/12/11 Future of Ruby VM - RubyConf2008 29

Ruby to C AOT Compiler

Ahead of Time Compilation
1. Compile Ruby Script to VM Bytecode
2. VM Bytecode to C

AOT compiler

C
source codeNative code C

compiler

Ruby script VM Bytecode

2008/12/11 30Future of Ruby VM - RubyConf2008

Execution with Ruby VM

Ruby to C AOT Compiler

evaled String

VM

VM InsnsNative code
（AOTed）

Ruby script

Extension
written in C

2008/12/11 31Future of Ruby VM - RubyConf2008

Evaluation Environment
Env CPU Memory OS C Compiler

32bit
Linux

Intel PentiumD
2.80GHz 2 GB Linux

2.6.24 gcc 4.2.3

64bit
Linux

Intel Xeon
3060 2.40GHz 1 GB Linux

2.6.18 gcc 4.1.2

cygwin
Intel Core Duo

U2400
1.06GHz

1.5 GB Windows
Vista SP1 gcc 3.4.4

PS3

Cell
Broadband

Engine
3.2GHz

256 MB Linux
2.6.16 gcc 4.1.1

2008/12/11 32Future of Ruby VM - RubyConf2008

Ruby to C AOT Compiler
Evaluation Results

5.26

1.66
1.44

5.17

1.38 1.26

3.40

1.46
1.02

2.85

1.34 1.36

0

1

2

3

4

5

6

while loop fibonacci number pentomino

32bit Linux
64bit Linux
cygwin
PS3

2008/12/11 33Future of Ruby VM - RubyConf2008

S
pe

ed
up

 R
at

io

Related Work

ruby2c by Eric, Ryan
Subset Ruby to C

yajit by Shinh
JIT (yarv bytecode to IA-32 with Xbyak)

yarv2llvm by Miura-san
JIT (yarv bytecode to LLVM asm)

2008/12/11 Future of Ruby VM - RubyConf2008 34

atomic-Ruby Project

Issue: Ruby is too Fat
Involves Convenient Functions.
Complex and Rational will be Built-in at Ruby 1.9

→ Difficult to Use “Embedded” Environment
“Embedded”

Embedded System such as Resource Limitation
Devs.
• In Many Case, Numeric Tower or m17n are not needed.
Application Embedded Ruby
• Application needs “DSL Engine”, doesnʼt Full-set Ruby

2008/12/11 Future of Ruby VM - RubyConf2008 35

atomic-Ruby Project (cont.)
We Need Slim Ruby Interpreter
atomic-Ruby makes “Suitable Ruby Interpreter”

Ruby Interpreter for Application
Ruby Interpreter for Environment (such as Embedded
Systems)
Ruby Interpreter for Driver Application

Utilize CRubyʼs Portability
3 Sub-Project with 3 Students

Plug-in/out Built-in Classes/Methods
Pre-Compilation and Remove Parser/Compiler
Switch Core-Feature such as GC, Regex, Thread, etc

2008/12/11 Future of Ruby VM - RubyConf2008 36

atomic-Ruby
Incremental GC

Switch GC Algorithm
Mark Partially

Execute App and Mark partially
Reduce Application Stop Time

Start GC

Application

GC

Finish GC

372008/12/11 Future of Ruby VM - RubyConf2008

Auto Write Barrier Detection

Write Barrier is Needed for Several GC
Algorithms.

Need Interpreter and Extensions.
Need Special Knowledge of VM and GC.
Cause Critical Bugs if WB Insertion Miss.

Automatically WB Detection System

38

Ruby
VM

WB
WB

WB WB

WB

Extension
Extension

Extension
W
B

W
B

2008/12/11 Future of Ruby VM - RubyConf2008

Snapshot (Real Time) GC

Stop Time of Application (Mark Phase)
Insert Many WBs.

39

0

20

40

0 10 20 30 40 50 60 70

スナップショットGC

従来のGC

S
top Tim

e
[m

s]

Heap Size [KB]

Snapshot GC
Current GC

2008/12/11 Future of Ruby VM - RubyConf2008

By The Way,
Other CRuby GC Related Projects

Generational GC (Kiyama)
1 bit Reference Count GC (Matz)
Floating as Special Constant (ko1)
Lazy Sweep (autherNari)
Bitmap GC (Enterprise Ruby, autherNari)
Mostly Copying GC (Ugawa)

2008/12/11 Future of Ruby VM - RubyConf2008 40

Multi-VM (MVM) Project

Multi Virtual Machine in One Process
Each VMs are able to run in Parallel

Each VMs have Giant VM Lock.
High Speed Inter-VM Communication

Inner Process Communication

2008/12/11 Future of Ruby VM - RubyConf2008 41

Multi-VM Overview

42

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

VM1 VM2

Multi-VM (MVM) Project

Sponsored by
Sun Microsystems, Inc.

Nobu (a.k.a Patch Monster)
is Working for This Project

2008/12/11 Future of Ruby VM - RubyConf2008 43

MVM

svn co
http://svn.ruby-lang.org/

repos/ruby/branches/mvm

2008/12/11 Future of Ruby VM - RubyConf2008 44

Summary

CRuby/YARV is
NOT “BEST” Solutuin

for Performance.

However, CRuby/YARV is
“GOOD” Solution for Us,

the Pragmatic Ruby Programmers,
at least Several Years.

2008/12/11 Future of Ruby VM - RubyConf2008 45

Summary (cont.)

CRuby is Enable to Evolve Moreover
Some Projects to Take advantage of CRuby

Ricsin: mix-in C to Ruby Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
Multi-VM Project

2008/12/11 Future of Ruby VM - RubyConf2008 46

Fin.

Thank You for Your Attention.
Any Questions?

SASADA Koichi
<ko1@rvm.jp>

Department of Creative Informatics,
Graduate School of Science and Technology,

The University of Tokyo

2008/12/11 Future of Ruby VM - RubyConf2008 47

2008/12/11 Future of Ruby VM - RubyConf2008 48

Accepted Method:
Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV

49

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Evaluation
Result (Micro-benchmark)

50

x 7.4
w/8 Cores

Discussion
How to Embed 64 bit Double?

51

VALUE embed Object doesnʼt need memory
overhead
64bit CPU have 64 bit pointer type
→ Use 64 bit CPU
At least we need 1 bit for TAG bit

From Mantissa?
• Decrease Precision
From Exponential?
• Decrease Representation Range

Evaluation
Toy-Program

52

9Reduce Mem Time
9Encode/Decode don’t

affect to Performance

Evaluation
Compared with other Ruby Impl.

53From Comp. Lang. Shootout [4]

	スライド番号 1
	Future of Ruby VM�Talk about Ruby VM Performance.��Ruby VMの未来，とかなんとか�
	Summary of My Talk
	Summary
	Self Introduction�Recent Report about Me
	Caution! (re-re-review)
	Agenda
	Remember The Evan’s Classification
	スライド番号 9
	Evolution of VM Performance�My Prediction
	Techniques for VM Performance
	Pros and Cons of JRuby/IronRuby
	Pros and Cons of Rubinius
	Pros of “C” Ruby
	Cons (Limitation) of “C” Ruby
	Our Performance Policy
	Keywords for Success
	Introduction of Our Research
	Hidden/Left Optimization Techs
	Ricsin: Mix-in C to Ruby
	Ricsin Notation
	Ricsin Total View
	Ricsin�Translation and Execution
	Ricsin: Evaluation
	Ricsin�Evaluation of Calling Null Function
	Ricsin�Evaluation: Iterator Optimization
	Ricsin�Evaluation: Matrix Multiplier
	Ricsin
	Ruby to C AOT Compiler
	Ruby to C AOT Compiler
	Ruby to C AOT Compiler
	Evaluation Environment
	Ruby to C AOT Compiler�Evaluation Results
	Related Work
	atomic-Ruby Project
	atomic-Ruby Project (cont.)
	atomic-Ruby�Incremental GC
	Auto Write Barrier Detection
	Snapshot (Real Time) GC
	By The Way,�Other CRuby GC Related Projects
	Multi-VM (MVM) Project
	Multi-VM Overview
	Multi-VM (MVM) Project
	MVM
	Summary
	Summary (cont.)
	Fin.
	スライド番号 48
	Accepted Method:� Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV
	Evaluation�Result (Micro-benchmark)
	Discussion�How to Embed 64 bit Double?
	Evaluation�Toy-Program
	Evaluation�Compared with other Ruby Impl.

