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Future of Ruby VM
Talk about Ruby VM Performance.

Ruby VMの未来，とかなんとか

SASADA Koichi <ko1@rvm.jp>
Department of Creative Informatics,

Graduate School of Science and Technology,
The University of Tokyo
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Summary of My Talk

“Scaling Ruby (without the Rails)“ 
Seems Interesting!

“Monkeybars: easy cross platform 
GUIs” Also Does!

On My Performance Interesting,
Former is Preferred ☺
Anyone make a Log?
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Summary

CRuby/YARV is
NOT a “BEST” Solution

for Ruby VM Performance.

However, CRuby/YARV is
“GOOD” Enough Solution for Us, 
the Pragmatic Ruby Programmers,

at least Several Years.
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Self Introduction
Recent Report about Me

ko1 - Koichi (Given Name) Sasada (Family Name)
From Japan, 5th RubyConf since 2004, 4th Speach
YARV Developer

Lecturer
Department of Creative Informatics, Graduate School 
of Science and Technology, The University of Tokyo.
Lecture: Programming System, but only 3 students 
attend

SASADA-lab
If you want to research about Ruby or Virtual Machine, 
Systems Software in Japan, please contact me.
2 students are there, but no one want to hack YARV. 
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Caution! (re-re-review)
I canʼt speak English well

If I say strange English, you can see the slide 
page
• Or ask another Japanese. They can speak English 
well.

• My Slides uses Small Characters (against Takahashi-sanʼs 
Presentation Method)

If you have any question, ask me with:
• Japanese (recommended)
• Ruby, C, Scheme, Java, …, Python, Haskell, ...
• Or Easy English
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Agenda

Perspective of Ruby VM Performance
VM Performance Discussion
Our Performance Policy

Introduction of Our Research
Hidden Optimization Techs.
Ricsin Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
MVM Project

Summary
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Remember The Evanʼs Classification

JRuby is for Java Programmers
IronRuby is for .Net Programmers
Rubinius is for Ruby Programmers

CRuby is for C Programmers
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OK.
Letʼs Talk about the “C”,

The Benefits and Limitation
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Evolution of VM Performance
My Prediction
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???

Now, CRuby is
Good one

CRuby has
Limitation

Finally, Rubinius
is Best for Ruby’s 
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When get here?
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at First



Techniques for VM Performance

Simple Optimization Techniques
C-level VM Techniques

Advanced Optimization Techniques
Dynamic Code Generation
• Speed-up using Native Machine code Compiler
• Just in Time Compilation
• Polymorphic Inline Cache
• Selective Inlining
Online Feedback Optimization
• HotSpot JIT Compiler
• Tracing JIT
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Pros and Cons of JRuby/IronRuby

Using Awesome VM
Pros.

Many Clever People Working on each VM
No Code is Good Code.
• No Bugs are Generated.
Many Libraries on Each Environments
Easy (?) to Use Parallelization

Cons.
Not Only Focused on Ruby, Semantics Gap
Canʼt Use C Extensions Directly
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Pros and Cons of Rubinius

Most of Code is Written in Ruby
Like Java

Pros.
Ruby in Ruby
• Meta-Circular Interpreter
Best Way to Improve Performance in the Long Run
Because They Can Analyze Most of Programs.
Mainly Focus on Ruby

Cons.
Long Way to Get High Performance VM
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Pros of “C” Ruby
Portability

Most of Environments have GCC Porting.
Maintainability

Everyone Know C.
Extensibility

Easy to Write Extension with C.
Performance Improvement

Easy to Write Simple (Machine Independent) 
Optimization.
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Cons (Limitation) of “C” Ruby
C Extension Libraries or Methods written in C

GC Problem
• Conservative Mark & Sweep Stop The World GC 
Inlining Problem
• Canʼt Inline C code into Ruby Code
Limitation of Program Analysis
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Our Performance Policy

CRuby is Not “Best” Solution but “Good” One
Continue to Improve CRubyʼs Implementation

in C
in Machine Dependent Way

Pragmatic, Practical Selection
at least several years
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Keywords for Success

“Embedding”
Parallelization
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Introduction of Our Research

To Take Advantage of “C”, Some Projects are 
Running

Hidden Optimization Techs on YARV
Ricsin: Mix-in C to Ruby Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
Multi-VM Project
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Hidden/Left Optimization Techs

Turned Off on 1.9.1 by Default
Tail call Optimization
Optimization using Unification
Stack Caching

Left Easy Optimization
Efficient Method Caching
Efficient Fiber Implementation using Platform 
dependent way such as makecontext()

These Optimizations will be Merged into 1.9.2
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Ricsin: Mix-in C to Ruby

Embed a part of C Program into Ruby
Like an RubyInline, but Embed Directly
Usage Example

Use C Libs Directly
Replace All Built-in Classes/Methods
Test Ruby C APIs
Performance Improvement Continuously
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Ricsin Notation
def open_fd(path) # Ruby 

fd = __C__(%q{
/* C */
return INT2FIX(open(RSTRING_PTR(path), O_RDONLY));

})
raise 'open error' if fd == -1
yield fd

ensure
raise 'close error' if -1 == __C__(%q{

/* C */
return INT2FIX(close(FIX2INT(fd)));

})
end
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Ricsin Total View
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rcb File
（Ruby+C）

Ricsin
Translator

Makefile C File
(C)

C Build Env.
(C compiler, etc)

so File
(C Extension)

rb File
(Ruby)

Ricsin-Ver
CRubyNeeded for Execution

Load/Exec



Ricsin
Translation and Execution
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/* A Part of Generated C Source */
#define v (cfp->lfp[3])
#define r (cfp->lfp[2])
VALUE ricsin_func_1(

rb_control_frame_t *cfp)
{

const VALUE self = cfp->self;
{

/* Embed C Body */
rb_p(self);
return INT2FIX(FIX2INT(v) + 1);

}
return Qnil;

}
#undef v
#undef r

# rcb
v = 42
r = __C__(%q{
/* Embed C Body */
rb_p(self); /* show “main” */
return INT2FIX(
FIX2INT(v) + 1);

})
p r #=> show “43”

[ADDR] [INSN]           [OPERAND]
0000 putobject 42
0002 setlocal v
0004 opt_call_ricsin <funcptr>
0006 setlocal r
0008 putnil
0009 getlocal r
0011 send             :p, 1
0017 leave

Generate

Bytecode Compile Function Call

Built to Extension Library



Ricsin: Evaluation

Performance Evaluation (Not a Usability)
Evaluation Environment

Env.1：Intel Xeon E5335, Linux
Env.2：SPARC T2, SunOS 5.10

Evaluation Items
1. Calling C Function (null call)
2. Example on Iterator
3. Matrix Multiprior
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Ricsin
Evaluation of Calling Null Function

C (sec) Ricsin (sec) C/Ricsin
Env.1
（Intel）

0.44 0.05 8.8

Env.2
（SPARC）

4.56 0.44 10.4
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Calling Null C Function
Null C Method
Null __C__ Embed



Ricsin
Evaluation: Iterator Optimization
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Env.2 (SPARC)Env.1 (Intel)

Rewrite Iterators with Ricsin
C: Current Iterator
Ricsin: Rewriting with __Ccont__
Ruby: Rewriting with Pure Ruby



Ricsin
Evaluation: Matrix Multiplier

Matrix Multiplier with Fixnum Elements
Replace 12 Lines Ruby Code to 36 Lines C 
Code Directly
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Ruby (sec) Ricsin (sec) Ruby/Ricsin
Env.1
（Intel）

10.57 0.57 20.33

Env.2
（SPARC）

85.31 6.73 12.68



Ricsin

svn co
http://svn.ruby-lang.org/

repos/ruby/branches/ricsin
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Ruby to C AOT Compiler

Translate Ruby Script to C Source Code at 
Ahead of Time

Compile Ruby to Bytecode
Translate Bytecode to C Source Code

Performance Improvement by
Eliminate VM Instruction Dispatch
Optimization by C Compiler
Eliminate Parse/Compile Time

2008/12/11 Future of Ruby VM - RubyConf2008 29



Ruby to C AOT Compiler

Ahead of Time Compilation
1. Compile Ruby Script to VM Bytecode
2. VM Bytecode to C

AOT compiler

C
source codeNative code C

compiler

Ruby script VM Bytecode
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Execution with Ruby VM

Ruby to C AOT Compiler

evaled String

VM

VM InsnsNative code
（AOTed）

Ruby script

Extension
written in C
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Evaluation Environment
Env CPU Memory OS C Compiler

32bit 
Linux

Intel PentiumD
2.80GHz 2 GB Linux 

2.6.24 gcc 4.2.3

64bit
Linux

Intel Xeon 
3060 2.40GHz 1 GB Linux 

2.6.18 gcc 4.1.2

cygwin
Intel Core Duo 

U2400 
1.06GHz

1.5 GB Windows 
Vista SP1 gcc 3.4.4

PS3

Cell 
Broadband 

Engine
3.2GHz

256 MB Linux
2.6.16 gcc 4.1.1
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Ruby to C AOT Compiler
Evaluation Results

5.26 

1.66 
1.44 

5.17 
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while loop fibonacci number pentomino

32bit Linux
64bit Linux
cygwin
PS3
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Related Work

ruby2c by Eric, Ryan
Subset Ruby to C

yajit by Shinh
JIT (yarv bytecode to IA-32 with Xbyak)

yarv2llvm by Miura-san
JIT (yarv bytecode to LLVM asm)
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atomic-Ruby Project

Issue: Ruby is too Fat
Involves Convenient Functions.
Complex and Rational will be Built-in at Ruby 1.9

→ Difficult to Use “Embedded” Environment
“Embedded”

Embedded System such as Resource Limitation 
Devs.
• In Many Case, Numeric Tower or m17n are not needed.
Application Embedded Ruby
• Application needs “DSL Engine”, doesnʼt Full-set Ruby

2008/12/11 Future of Ruby VM - RubyConf2008 35



atomic-Ruby Project (cont.)
We Need Slim Ruby Interpreter
atomic-Ruby makes “Suitable Ruby Interpreter”

Ruby Interpreter for Application
Ruby Interpreter for Environment (such as Embedded 
Systems)
Ruby Interpreter for Driver Application

Utilize CRubyʼs Portability
3 Sub-Project with 3 Students

Plug-in/out Built-in Classes/Methods
Pre-Compilation and Remove Parser/Compiler
Switch Core-Feature such as GC, Regex, Thread, etc

2008/12/11 Future of Ruby VM - RubyConf2008 36



atomic-Ruby
Incremental GC

Switch GC Algorithm
Mark Partially

Execute App and Mark partially
Reduce Application Stop Time

Start GC

Application

GC

Finish GC
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Auto Write Barrier Detection

Write Barrier is Needed for Several GC 
Algorithms.

Need Interpreter and Extensions.
Need Special Knowledge of VM and GC.
Cause Critical Bugs if WB Insertion Miss.

Automatically WB Detection System

38

Ruby
VM

WB
WB

WB WB

WB

Extension
Extension

Extension
W
B

W
B
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Snapshot (Real Time) GC

Stop Time of Application (Mark Phase)
Insert Many WBs.
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By The Way,
Other CRuby GC Related Projects

Generational GC (Kiyama)
1 bit Reference Count GC (Matz)
Floating as Special Constant (ko1)
Lazy Sweep (autherNari)
Bitmap GC (Enterprise Ruby, autherNari)
Mostly Copying GC (Ugawa)
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Multi-VM (MVM) Project

Multi Virtual Machine in One Process
Each VMs are able to run in Parallel

Each VMs have Giant VM Lock.
High Speed Inter-VM Communication

Inner Process Communication
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Multi-VM Overview

42

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

VM1 VM2



Multi-VM (MVM) Project

Sponsored by
Sun Microsystems, Inc.

Nobu (a.k.a Patch Monster)
is Working for This Project
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MVM

svn co
http://svn.ruby-lang.org/

repos/ruby/branches/mvm
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Summary

CRuby/YARV is
NOT “BEST” Solutuin

for Performance.

However, CRuby/YARV is
“GOOD” Solution for Us, 

the Pragmatic Ruby Programmers,
at least Several Years.

2008/12/11 Future of Ruby VM - RubyConf2008 45



Summary (cont.)

CRuby is Enable to Evolve Moreover
Some Projects to Take advantage of CRuby

Ricsin: mix-in C to Ruby Project
Ruby to C AOT Compiler Project
atomic-Ruby Project
Multi-VM Project
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Fin.

Thank You for Your Attention.
Any Questions?

SASADA Koichi
<ko1@rvm.jp>

Department of Creative Informatics,
Graduate School of Science and Technology,

The University of Tokyo
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Accepted Method:
Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・



Evaluation
Result (Micro-benchmark)
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x 7.4
w/8 Cores



Discussion
How to Embed 64 bit Double?

51

VALUE embed Object doesnʼt need memory 
overhead
64bit CPU have 64 bit pointer type
→ Use 64 bit CPU
At least we need 1 bit for TAG bit

From Mantissa?
• Decrease Precision
From Exponential?
• Decrease  Representation Range



Evaluation
Toy-Program

52

9Reduce Mem Time
9Encode/Decode don’t

affect to Performance



Evaluation
Compared with other Ruby Impl.

53From Comp. Lang. Shootout [4]
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