Ruby @ GC DREE=R &
NEFECDODVNWTD—BER

A study on issues and improvements
on Ruby’s Garbage Collection

- Asakusa.rb

- Ruby Association
Ruby

- Heroku, Inc. MTS

- Ruby CRuby/MRI
A Ruby
A
A

PROGRAMMING

Language

2

- Ruby 2.0.0 was released!!
- 2013/02/24 (20 ™ anniversary of Ruby lang.)

- Rubyist Magazine Ruby 2.0.0
A
AEnglish!!
A

- VM
A
A Ruby 1.9.4
A

Amame 2.0

API
Adebugger2 (experimental release)

F 4
hero kU How it Works = Pricing = Add-ons | Dev Cd

Blog

Matz on Ruby 2.0 at Heroku's Waza

by Craig - Mar 06

Matz, the creator of Ruby, spoke at Waza for the 20th anniversary of the language and the release of
Ruby 2.0. If you weren't in the sold out crowd, not to worry. Information should flow free and experiences
should be shared:; in line with those concepts you can watch Matz's talk right here, then read about what's
new in this version of Ruby and how to run it on Heroku

With slides available on speakerdeck

Keep reading for more information on Ruby 2.0 or check out our first batch of videos from Waza 2013. To
stay up to date as we post new videos, follow us @heroku

Running 2.0 on Heroku

If yvou're interested in taking advantage of these new features give it a try on Heroku today. To run Ruby 2.0
on Heroku you'll need this line in your |(Gemfile

ruby "2.0.0"

Then commit to git:

£ git add .
£ git commit -m "Using Buby 2.0 in production™

We recommend that you test your app using 2.0 locally and deploy to a staging app before pushing to
production. Now when you |$ git push heroku master| our Ruby buildpack will see that you've

declared your Ruby version and make sure you get the right one.

Heroku

20 years of simplicity, elegance, and programmer happiness

Heroku, since its founding, has been aligned with the key values of Ruby — simplicity, elegance, and
programmer happiness. Heroku still believes in the pgwer and flexibility of Ruby, and we've invested in the
language by hiring Yukihiro "Matz" Matsumoto, and Nobuyoshi Nakada. We would like fo
thank them and the whole Ruby core team for making &7 release happen. Join us in celebrating Ruby's
successes and in looking forward to the next twenty ygars by trying Ruby 2.0 on Heroku today.

Ruby apps are running using 1.8.7, vou should upgrade. Ruby 1.8.7 is approaching End of Life (EOL) in
three months on June 2013. EOL for Ruby 1.8.7 means no securty or bug patches will be provided by the
maintainers. Mot upgrading means you're potentially opening up your application and your users to
vulnerabilities. Don't wait till the final hour, upgrade now to be confident and secure.

Ruby 2.0 has a faster garbage collector and is Copy on Write friendly. Copy on Write or COW is an
optimization that can reduce the memory footprint of a Ruby process when it is copied. Instead of
allocating duplicate memory when a process is forked, COW allows multiple processes to share the same
memaory until one of the processes needs to modify a piece of information. Depending on the program, this
optimization can dramatically reduce the amount of memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your memory footprint with Ruby 2.0 may allow you to run more
processes in fewer dynos.

If you're not already running a concurrent backend consider frying the Unicorn web server
Features

In addition to running faster than 1.9.3, and having a smaller footprint, Ruby 2.0 has a number of new
features added to the language including:

Mention about “Speed”

Ruby 2.0 has a faster garbage collector and is Copy
on Write frienc

optimization tha GC bitmap marking

a Ruby process cow friendly
duplicate memo

allows multiple processes to share the same memory
until one of the processes needs to modify a piece of
Information. Depending on the program, this
optimization can dramatically reduce the amount of
memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your
memory footprint with Ruby 2.0 may allow you to run
more processes in ' _

f 07 GAUdZBI Unicorn

consider trying the Unicorn web server .

http://en.wikipedia.org/wiki/Copy-on-write
http://en.wikipedia.org/wiki/Copy-on-write
http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

Ruby
CRuby/MRI
- Agenda
1. Ruby GC
2. Ruby GC
3. Ruby GC
4. Ruby GC

GC

@kakutani s ay s
Asakusa.rb () Asakusa.rb

https:// twitter.com/kakutani/status/299131003593687041

Ruby GC
Ruby
Ruby

10

AFEROEBSH

(@nari3)

Mark & Sweep

- Conservative ()

- Lazy Sweep (from Ruby 1.9.3)

- Bitmap marking (from Ruby 2.0)

. Stack -less marking (from Ruby 2.0)

12

mark
(!marked) sweep()
GC

13

Ruby®XA€UEH
heaps & heap_slots

heaps
(o] &)
—— ™ pyelue |Rvalue |t 0 heap slots (BEIE . 16KB) -+ | puwelue | RusLue
Rh\"m
RVALUE |RvaLue |-+ heap slots (EFEE, 16KB) -+ | puvatue | rvaLue
e
\s RVALUE |RwALUE |- heap slots (BEIFE &, 16KB) -+ | rveLue | rRvALUE
RVALUE |RVELUE |--- heap_slots (EIFE &, 16KB) --- | Rvalue | RvaLuE

heaps
(oJ=E &)

Root objects

Stack

Classes

/

=1/

Global variables

[/

]

Malloced memory

RVABLUE R\#\V

en

RWALUE |RVALUE |- - heap_s/ie(s (@EE, 16KB) --- | mwaLUE | RvaLUE
\/ L/ \ /

RWALUE |RWALUE |- heap_slots ('\;FE, 16KM

RVALUE |RvaLUE |-+ heap_slots (EIFE &, 16KB) --- | muslue | RvALUE

RVALUE [RwaLuE |-+ heap_slots (BEIFE &, 16KB) -+ | RvaLUE | RuALUE

15

- Ruby M&S

- C Ruby

- C — C Friendly!"!

16

heaps
(oJ=E &)

Root objects

Stack

Classes

/

=1/

Global variables

[/

]

Malloced memory

RVABLUE R\#\V

en

RWALUE |RVALUE |- - heap_s/ie{s (@EE, 16KB) --- | mwaLUE | RvaLUE
\/ L/ \ /

RWALUE |RWALUE |- heap_slots ('\;FE, 16KM

RVALUE |RvaLUE |-+ heap_slots (EIFE &, 16KB) --- | muslue | RvALUE

RVALUE [RwaLuE |-+ heap_slots (BEIFE &, 16KB) -+ | RvaLUE | RuALUE

17

- mark sweep GC

- SWeep sweep

18

Lazy sweep

Before 1.9.3: Stop the world mark and sweep

Ruby a Mark a Sweep Ruby execution a

< >
Stop the (Ruby) World

. After 1.9.3: Stop the world mark, and incremental sweep

Ru by Mark Sweep Sweep Sweep Sweep Sweep
< > : .
Stop the (Ruby) Ruby execution with
World incremental sweep

Shorter (shorter stopping time)
_

20

Bitmap marking
from Ruby 2.0.0

mark bit object
CoW friendly

CoW friendly...?
fork
Windows

REE (Ruby Enterprise Edition)

fork

21

- fork Unix

Processl) Process?
(P1) (P2)
| Page table | " Page table |

P1 P2

22

Bitmap marking
CoW friendly?

Copy on Write

CoW
fork
Processl Process? -
= CoW friendly
Page table Page table fork
P1 P2

P1, P2 Unicorn)

23

heaps

Bitmap marking

€D Ruby @ GC (X ?

(TER)

V4

e

Mb | MD Mb Mb
RVBLUE |RVBLUE |-+ heap_slots (EIFEE, 16KB) -+ | pualue | rvaLue
RVBLUE |RVBLUE |-+ heap_slots (EIFEE, 16KB) -+ | pualue | rvaLue
RVBLUE |RVBLUE |-+ heap_slots (EIFEE, 16KB) -+ | pualue | rvaLue
RVALUE |RWALUE |+ heap_slots (EFE ., 16KB) '+ | RWALUE | RWALUE

GC

Mark bit (MB)
Y CoW non-friendly!!

24

- Mark bit
Mark bit

—

- Bitmap!!

25

heaps

Bitmap marking
Bitmap DERFRFE

(O[ZE &)

bit operation

— Header RwWALUE

V4

-+ heap_slots (EFEE, 16KB) --- | puaiue | RvaLUE
\
Head¥r |pvaLue |-+ heap_slots (BEFE &, 16KB) --- | muvelue | rvsLue
\ Header wvaLUE | '+ heap_slots (BEIFF &. 16KB) -+ | rvaLue | rvaLuE
N\
Header |p\ud -+ heap_slots (EFEH, 16KB) -+ | RuaLUE | RVALUE

Bitmap

26

- CoW friendly
Amark write
Asweep read
A

- bit

up!

fork

27

- Bitmap

28

mark
mark(obj) {
mark(obj->refl);
mark(obj->ref2);

}

Fiber
A Ruby 2.0.0 Fiber

29

Non-recursive GC
algorithm

mark(obj){
stack.push (obj->refl);
stack.push (obj->ref2);

}
mark_all (){

root_objects.each {| obj| mark(obj);}
while(! stack.empty ?)1
mark(stack.pop);

}
}

30

mark

- GC

31

A
A

32

GC
R GC
. compaction
GC ok
GC
mark
CRuby
C-Friendly

GC %

1 C-friendly B\EHEI(C ?

GC
51 MU E

GC compaction
51 MU 7PERBE

GC
51 MU HRE
mark

AEBVUEDZ FLADT7 J)5F—>3 >Hh\wE

cnslix. Cc o093 AIC
AIHOFEZEMAIZNEEREE 1 |

34

C - C

o

GC

35

Good
at First

uby

JRuby, IronRuby /

Now, CRuby is
Good one

Rubinius

Finally, Rubinius

S Best
Pefromance

CRuby has
Limitation

Question:
When get here?

We are here

Time / Effort / Money

2013/3/16

Future of Ruby VM - RubyConf2008 36

37

HABIGC DEA &
valgrind ZRWZHEHABIGCE Az IR

GC Wwrite -barrier
write -barrier

C write -barrier

E3ESipAN]

Wed May 13 22:34:31 2009 Narihiro Nakamura <authorNari@gmail.com>

* gc.c: add longlife garbage collection. [ruby -dev:38423]

3 GC

Sat May 16 17:26:04 2009 Narihiro Nakamura <authorNari@gmail.com>

* iseqg.c (rb_iseq_clone): use longlife object and insert write barrier.

Mon Aug 10 10:57:59 2009 Narihiro Nakamura <authorNari@gmail.com>

* gc.c: reject unused longlife gc. longlife gc targetis longlife
NODE by method table and vm inline cache. but, fixed it at
r24085, r24128. so |l rejected longlife gc.

39

HABIGC DEA &
valgrind ZRWZHEHABIGCE Az IR

GC

- valgrind

FRICEDRAFYT

Ruby

42

- Ruby GC
- Thanks, Nari-san

Ruby GC
- Ruby 2.0.0

“efriendl y”

- Ruby 2.1 (or later)

43

Ruby GC

A study on issues and improvements
on Ruby’ s (dslectitna g e

Koichi Sasada

Heroku, Inc.
kol@heroku.com

H To be continued...

44

