
なんで新しい
debug.gem が必要なの？

Koichi Sasada

<ko1@cookpad.com>

1

About this talk

• Introduce “debug.gem” https://github.com/ruby/debug
• Newly created debugger for Ruby 2.6 and later

• Will be bundled with Ruby 3.1 (Dec/2021)

• Demonstrate “debug.gem”
• Basic usage instructions

• Advanced features

• The presentation slides with the talk script is available at here:
https://www.atdot.net/~ko1/activities/

2

https://github.com/ruby/debug
https://www.atdot.net/~ko1/activities/

About Koichi Sasada

• Ruby interpreter developer employed by
Cookpad Inc. (2017-) with @mame
• YARV (Ruby 1.9-)

• Generational/Incremental GC (Ruby 2.1-)

• Ractor (Ruby 3.0-)

• …

• Ruby Association Director (2012-)

3

What is a debugger?

• A tool to help debugging
• To investigate the cause of problems

• To know the program live state

• To understand the program

• Basic features
• CONTROL execution

• STOP at breakpoints

• STEP forward to the next line

• …

• QUERY program status

4

Ruby’s existing debuggers

• lib/debug.rb
• ruby -r debug script.rb

• Standard library, but maybe nobody uses it

• byebug
• byebug script.rb

• debase / ruby-debug-ide
• Used by IDE (rubymine, vscode, …)

5

Why create yet another debugger?

• Performance
• Existing debuggers slow with breakpoints

• Recent TracePoint API support line-specific

• Native support for remote execution and IDE

• Native support for Ractors

• (and I like to make this kind of tools)

6

Introduction of
“debug.gem”
https://github.com/ruby/debug

7

https://github.com/ruby/debug

All information are explained in
https://github.com/ruby/debug

8

https://github.com/ruby/debug

debug.gem

• Created from scratch (2021 Feb~)

• Supports Ruby 2.6 and later
• Utilize recent introduced APIs

• Ruby 3.1 (2021/Dec) will be shipped with debug.gem
• Replacement with old lib/debug.rb

• Like other libraries (lib/debug.rb, byebug, gdb, lldb, …)
debug.gem provides REPL to execute debug commands

9

Performance
def fib n

if n < 0

raise # breakpoint

elsif n<2

n

else

fib(n-1)+fib(n-2)

end

end

require 'benchmark'

Benchmark.bm{|x|

x.report{ fib(35) }

}

Without
breakpoint

With breakpoint

ruby 0.93 N/A

rdbg (debug.gem) 0.92 (x0.98) 0.92 (x0.98)

byebug 1.23 (x1.32) 75.15 (x80.80)

RubyMine 0.97 (x1.04) 22.66 (x24.36)

old lib/debug.rb 221.88 (x238.58) 285.99 (x307.51)

10

ruby 3.0.1p64
rdbg 1.0.0.rc2
byebug 11.1.3
RubyMine 2021.2.1 w/ debase 0.2.5.beta2

Intel(R) Core(TM) i7-10810U CPU, Windows 10, WSL2

Execution time in sec (ratio with ruby result (smaller is better))

Use debug.gem

1. Use “rdbg” command
• rdbg target.rb

• rdbg –c -- bin/rails

• rdbg –c -- bundle exec rake

2. Load “debug.gem” in your application
• require “debug” (or “debug/…”, see doc)

• gem ‘debug’ in Gemfile (and Bundler.require)

3. Use with IDE
• (VSCode) .vscode/launch.json (ruby-rdbg extension will make) and

push “Start debugging” button

11

Demo: Basic usage

12

13

Basic features

• Control the program execution
• Set breakpoints

• Step execution (step-in/over/out)

• Query the program status
• See the source code at breakpoint

• See the backtrace

• Select the frame in backtrace

• Access to variables of the specific frames

• Evaluate an expression on the specific frame

14

Set a breakpoint

• Use “break” command at the beginning
• break 10 # break at 10 line on current file

• break foo.rb:10 # break at the location

• break MyClass#my_method # break at the method

• catch FooException # break at FooException is raised

• break … if foo == bar # break if foo == bar

• Write “binding.break” line in your program
• You can insert it like “binding.irb”

• “binding.b” for short and “debugger” like JavaScript

• Use IDEs/editors breakpoint support

15

Set a breakpoint (cont.)

• Use “break” command at the beginning (and IDE)
• Do not need to modify the source code

• Cooperation with IDE/Editor (e.g. set it with F9 on VSCode)

• Write “binding.break” method in your program
• Straight forward for some Ruby users

16

Control debugger from the program by
binding.break do: expr

enable “trace line” feature while bar()

def foo

binding.break do: ‘trace line’

bar()

biding.break do: ‘trace off line’

end

17

Step execution
Step-in, Step-over, Step-out

def foo(a)

bar()

baz()

boo()

end

foo(1)

foo(2)

Step-in
(“step” command)
Stop at next breakable line

Step-over
(“next” command)
Stop at next line

Step-out
(“finish” command)
Stop at outer frame

(1) step-in
(3) step-out

(2) step-over

18

Access to the local variables in the specific
frame

• See the backtrace with “backtrace”

• Select the frame
• “frame <num>”

• “up” / “down” to select upper/lower

• Access to the frame local variables
• “outline” command and “info”

command for overview

• “p <expr>” and “pp <expr>”

19

Advanced features

• [demo] Pause with “Ctrl-C” or when attaching the debugger

• [demo] VSCode/Chrome browser seamless integration

• [demo] Remote debugging

• [demo] Postmortem debugging

• [demo] Record and replay debugging

• [demo] Multi-process debugging

• [demo?] Event tracing

20

Demo: Pause with “Ctrl-C” or when
attaching the debugger
• You can see the current execution status with the debugger

21

Demo: Seamless integration with
VSCode/Chrome browser

22

Demo: Seamless integration with
VSCode/Chrome browser

23

Demo: Start VSCode for debugger frontend

24

Demo: Remote debugging
Connect over network
• Easy to open remote debug port and attach

• rdbg --open script.rb (or rdbg –O)
• Run program with opening debug port
• require ‘debug/open’ # in script

• rdbg –attach (or rdbg –A)
• Access to debug port

• Debug no TTY attached processes
• Daemon processes
• Redirecting by shell’s pipe

• Query the process status like sigdump but more
details

25

26

process

debugger

process

debugger

TCP/IP

UNIX Domain socket

process

debugger

VSCode/Chrome

process

debugger

VSCode

vscode client

ssh

Same machine Cross machine VSCode/Chrome
VSCode
cross machine

Demo: Postmortem debugging
Debug dead Ruby process

28

Demo: Record and replay debugging
Backward stepping execution

29

30

Demo: Multi-process debugging

• You can debug multiple processes (fork family) with one
debugger
• Prompt shows which process

• Only one process can be operated by the debug console at the same
time

31

Acknowledgements

• Naoto Ono san (@ono-max) implements test-frameworks for
the debugger and Chrome browser support. The part of
works were done in GSoC project.

• Stan Lo san (@st0012) submits tremendous patches to
improve the debugger usability such as coloring and so on
based on his debugger trials. Also, he makes many tests for
the debugger.

• Ruby committers helps me to design and implement the
debugger

32

Conclusion

• “debug.gem” is newly created Ruby debugger from scratch
• Faster.

• Modern UI.

• Many useful features.

• “gem install debug” now!
• And give us your feedback.

• I love to introduce the debugger on your meetup, please contact me.

• Ractor supports is not available, now working on.

33

なんで新しい
debug.gem が必要なの？

Koichi Sasada

<ko1@cookpad.com>

Thank you for your listening!

34

