
Progress report of
"Ruby 3 Concurrency"

Cookpad Inc.

Koichi Sasada
<ko1@cookpad.com>

Ruby X Elixir Conf Taiwan 2018 (2018/04/28)

Today’s topic

• Difficulty of Thread programming

• New concurrent abstraction for Ruby 3 named Guild

– To overcome threading difficulties

• Introduce current Guild development progress

– Current “Semantics”

– Current API design and sample code we can run

– Preliminary performance evaluation

Koichi Sasada
http://atdot.net/~ko1/

• Programmer

– 2006-2012 Faculty at Univ.

– 2012-2017 Heroku, Inc.

– 2017- Cookpad Inc.

• Job: MRI development

– MRI: Matz Ruby Interpreter

– Taking a charge of core parts

• VM, Threads, GC, etc

One of Japanese translators of
“Programming Elixir”

Written by Dave Thomas
Translated by
Koichi Sasada
Yuki Torii

2016 Ohmsha

Recent achievements for Ruby 2.6

• Speedup `Proc#call` because we don't need to care
about `$SAFE` any more. [Feature #14318]. With
`lc_fizzbuzz` benchmark which uses so many
`Proc#call` we can measure x1.4 improvements [Bug
#10212].

• Speedup `block.call` where `block` is passed block
parameter. [Feature #14330] Ruby 2.5 improves block
passing performance. [Feature #14045] Additionally,
Ruby 2.6 improves the performance of passed block
calling.

A proposal of

new concurrency model

for Ruby 3

RubyKaigi 2016

Motivation

Productivity (most important for Ruby)

• Thread programming is too difficult

• Making correct/safe concurrent programs easily

Performance by Parallel execution

• Making parallel programs

• Threads can make concurrent programs, but can’t run

them in parallel on MRI (CRuby)

• People want to utilize Multi/many CPU cores

RubyKaigi2016 Proposal

Guild: new concurrency abstraction for Ruby 3

• Idea: DO NOT SHARE mutable objects between Guilds

→ No data races, no race conditions

Replace Threads to Guilds

DIFFICULTY OF
MULTI-THREADS
PROGRAMMING
AND
HOW TO SOLVE IT?

Difficult to make
correct (bug-free)

programs

Muilti-threads programming is difficult

Difficult to make
fast programs

• Introduce data race, race condition

• Introduce deadlock, livelock

• Difficulty on debugging because of
nondeterministic behavior

– difficult to reproduce same problem

• Difficult to tune performance

Inter-thread communication

v = Object.new

$g = Object.new

Thread.new do

p [v, $g]

end

p [v, $g]

Ruby process

obj

Thread 1 Thread 2

We can share objects directly
between threads very easily

objv $g

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1)Thread A tries to change the Speaker
to “Yuki” (female)

Note: Yuki is my wife.

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

write

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘female’

(3) A changes the gender to “female”

write

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘female’

(4) Complete.
A and B can read correct speaker.

read read

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1) Thread A tries to change the Speaker
to “Yuki” (female)

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

write

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(3) Before the changing,
B read incorrect data!!

Note: Yuki should be female.

read

Inter-thread communication
Synchronization

• Require synchronization for shared data
– Mutex, Queue and so on

• Usually Queue is enough

– To prohibit simultaneous mutation

– We need to keep consistency for each objects

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1) Thread A tries to change the Speaker
to “Yuki” (female). Lock an obj.

Locked by A

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

Locked by A

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(3) Before complete the changing,
B tries to read, but prohibited by a lock

Locked by A

read

Difficulty of multi-threads programs
Easy to share objects between Threads

• We need to synchronize all sharing mutable
objects correctly

– Easy to share objects, but difficult to recognize

• We can track on a small program, but…

• Difficult to track them on big programs, especially
on programs using many gems

• We need to check whole source codes includes
libraries, or believe library documents (but
documents should be correct)

Goal of Ruby 3 concurrency

• Easy to make “Correct” concurrent program

– Restrict sharing mutable objects between threads

– Introducing Objects ISOLATION mechanism

• Support parallel programming

– Running programs simultaneously on multi-cores

– Introducing MINIMUM synchronizations to MRI

• Keep compatibility with Ruby 2

Key idea

Problem of multi-thread programming:

Easy to share mutable objects

Idea:

Do not allow to share mutable objects
without any restriction

Options (1)
Make all objects immutable

Imm
obj1 Imm

obj2

Process1 Process2

Like Elixir!!

But it break Ruby’s compatibility!!

Process1 Process2

Option (2)
Copy everything

obj1

obj2

obj1

obj2

Copy

Copy

Like shell script (pipe), dRuby, …

But it is difficult (sometimes) and copying causes overhead.

Options

• (1) Make all objects immutable
– Good: No mutable sharing

– Bad: Huge incompatibility issue

• (2) Copy everything
– Good: No mutable sharing, no compatible problem

– Bad:
• No sharing objects is difficult to make programs

• Copy overhead

• (3) Share only “shareable” objects

Options (3)
Share only “shareable” objects

Shareable
obj1

Shareable
obj2

Concurrent
entity 1

Concurrent
entity 2

normal
mutable

obj1

normal
mutable

obj2

Good: (Normal) mutable objects can’t share between concurrent entities
Good: Easy to share “shareable” objects
Good: No compatible issue (at least on only 1 concurrent entity)

GUILD
NEW CONCURRENT ABSTRACTION
FOR RUBY3

Guild Guide

• Guilds, Threads and Fibers

– Relations between Guilds, Threads and Fibers

– How to create Guilds in Ruby code?

• Inter-Guild communication

– Isolation design: Shareable and non-shareable objects

– Send by copy and move

• Example patterns

Guilds, Threads and Fibers

• Guild has at least one thread (and a thread has at
least one fiber)

Guild

Thread

Fiber

Guild

Thread

Fiber

Guild

Thread

Fiber

Fiber

Thread

Fiber

Threads in different guilds
can run in PARALLEL

– Threads in different guilds can run in parallel

– Threads in a same guild can not run in parallel because
of GVL (or GGL: Giant Guild Lock)

G1:T1

G1:T2

G2:T3

Acquire GGL

Acquire GGL

Making Guilds

g1 = Guild.new do

expr1

end

g2 = Guild.new do

expr2

end

Two new Guilds and Threads are created

expr1 and expr2 are run in parallel

Inter-Guild communication
Share only “shareable” objects

Shareable
obj1

Shareable
obj2

Guild 1 Guild 2

normal
mutable

obj1

normal
mutable

obj2

Design “Shareable” and “non-sharable”

• On concurrent programs, most of objects are not
shared (thread-local)

– Tons of local objects and a few sharing objects

– We can introduce sharing objects which requires
synchronization to make correct concurrent programs but
they cause additional overhead

Design “Shareable” and “non-sharable”

• Non-shareable objects

– (normal) Mutable objects (String, Array, …)

– They are member of only one Guild

– Using only 1 Guild, it compatible with Ruby 2

Guild 1 Guild 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

Design “Shareable” and “non-sharable”

• Shareable objects

– (1) Immutable objects (Numeric, Symbol, …)

– (2) Class/Module objects

– (3) Special mutable objects

– (4) Isolated Proc

Shareable objects
(1) Immutable objects

• Immutable objects can be shared with any guilds
– Because no mutable operations for them

• “Immutable” != “Frozen”
– a1 = [1, 2, 3].freeze: a1 is Immutable
– a2 = [1, Object.new, 3].freeze: a2 is not Immutable
– Maybe we will introduce deep freeze feature

• Numeric objects, symbols, true, false, nil are
immutable (from Ruby 2.0, 2.1, 2.2)

• Frozen string objects are immutable (if they don’t have
instance variables)

Shareable objects
(2) Class/Module objects

• All objects (includes any sharable objects) point to own
classes
– Good: Sharing class/module objects makes program easier
– Bad: They can points other mutable objects with Constants,
@@class_variable and @instance_variables

class C

Const = [1, 2, 3] # Const points a mutable array

end

We will introduce special protocol for them

Shareable objects
(3) Special mutable objects

• Introduce shared/concurrent data structure
– Shared hash, array, …

– Software transactional memory (from Clojure, …), …

– Guild objects and so on

• They require special process to force
synchronization explicitly

→ Correct concurrent programs

• Compared with normal Array, Hash, … they require
special synchronization protocol to access

Shareable objects
(4) Isolated Proc

• normal Proc can points mutable objects with outer
local variable (free-variables)

a = []; Proc.new{p a}.call

• Introduce Isolated Proc (made by Proc#isolate)

which is prohibited to access outer variables

a = []; Proc.new{p a}.isolate.call

#=> RuntimeError (can’t access a)

(there are more details but skip)

Shareable objects
(4) Isolated Proc

Initial block for Guild is isolated proc

g1 = Guild.new do

expr1 # Make isolated block and invoke

end

g2 = Guild.new do

p g1 #=> RuntimeError (can’t access “g1”)

because block is isolated

end

Inter-Guild communication API

• send/receive semantics

• Address is represented by Guild itself like
Erlang/Elixir processes

• Sending shareable objects means sending only
references to the objects (lightweight)

• Two method to send non-shareable objects

– (1) COPY

– (2) MOVE

Sending objects between Guilds

g1 = Guild.new do # create Isolated Proc

n = Guild.receive

r = fib(n)

Guild.parent.send(r)

end

g1 << 30

p Guild.receive #=> 1346269

Sending shareable objects

Guild1: g1 Guild2: g2

o2
o3

o1

g2 << o1 o1 =Guild.receive

O2:Data O3:Data

Sending non-shareable objects
(1) Send by Copy

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

g2 << o1 o1 = Guild.receive

O2:Data

O3:Data

O2:Data

O3:Data

Sending non-shareable objects
(2) Send by Move

Guild1 Guild2

o2
o3

o1
channel

MOVE

g2.move(o1) o1 =Guild.receive

O2:Data

O3:Data

Sending non-shareable objects
(2) Send by Move

Guild1 Guild2

channel

o2
o3

o1

MOVE

g2.move(o1) o1 = Guild.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective,
sent objects are invalidated

Sending non-shareable objects
(2) Send by Move

• If we don’t access sent objects after sending them
(and there are many such cases), we can send
them faster

• Examples

– Huge string data

– I/O operation (send request I/O to workers)

Summary of object sharing/non-sharing

• Shareable objects
– Several types of shareable objects

– We can share them between Guilds

• Non-sharable objects
– Normal mutable objects (like String, Array, …)

– Only one Guild can access such objects == membership

– We can send them by COPY or MOVE

• Mutable objects are NOT shared accidentally as
Thread programming → Correct concurrent Prog.

Patterns

• (1) Master-worker pattern

• (2) Pipeline pattern

(1) Master-worker pattern

make N guilds

gs = N.times.map{

Guild.new do

n = Guild.receive

Guild.parent << fib(n)

end

}

send task

gs.each{|g|

g << P

}

receive answers

N.times{

p Guild.receive

}

Main
Guild

Fibonacci
Guild
Fibonacci

GuildFibonacci
Guild

(2) Pipeline pattern

• Run different tasks for one data

• Example
str = ' foobarbaz ‘

str = str.strip.upcase.gsub('A', ‘B’) #=> "FOOBBRBBZ"

#=> There are 3 different tasks

str = str.strip

str = str.upcase

str = str.gsub('A', ‘B’)

on Elixir

str |> String.trim

|> String.upcase

|> String.replace(…)

(2) Pipeline pattern
g_strip = Guild.new do

next_guild = Guild.receive

while str = Guild.receive

next_guild.move str.strip

end

next_guild << nil

end

g_upcase = Guild.new do

next_guild = Guild.receive

while str = Guild.receive

next_guild.move str.upcase

end

next_guild << nil

end

g_replace = Guild.new do

next_guild = Guild.receive

while str = Guild.receive

next_guild.move str.gsub('A', 'B')

end

next_guild << nil

end

g_strip << g_upcase

g_upcase << g_replace

g_replace << Guild.current

g_strip.move ' foobarbaz '

p Guild.receive

Main
Guild

Strip
Guild

' foobarbaz '

‘foobarbaz'

Upcase
Guild

‘FOOBARBAZ’

Move
and modify

Replace
Guild

"FOOBBRBBZ"

Return by
Move

(2) Pipeline pattern
Framework for frequent patterns

class Guild

Make series of Guilds for a pipeline

def self.pipeline *tasks

task_guilds = tasks.map{|task|

Guild.new do

next_guild = Guild.recv

while obj = Guild.recv

next_guild.move task.call(obj)

end

next_guild.move nil

end

}

next_g = Guild.current

task_guilds.reverse_each{|g|

g.send next_g

next_g = g

}

task_guilds.first

end

end

g = Guild.pipeline -> str { str.strip },

-> str { str.upcase },

-> str { str.gsub('A', 'B') }

We need to design a library like OTP.

Supposed usecases

• Web application backend

– Guild pool for request workers

– Straight forward approach

Experimental results
Run fib(36) on 40 cores machine

(2 HT x 10 cores x 2 processors Xeon E5-2630 v4)

0

5

10

15

20

0 20 40 60 80

S
p
e
e
d
u
p
 R

a
ti
o

(s
e
ri
a
l
/

G
u
il
d
)

of Guild

Experimental results
Run fib(36) on 40 cores machine

(2 HT x 10 cores x 2 processors Xeon E5-2630 v4)

0

0.5

1

1.5

2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

S
p
e
e
d
u
p
 R

a
ti
o

(F
o
rk

 /
 G

u
il
d
)

of Guild or Process

Speedup ratio (Fork/Guild)

Note
There are more and more details to discuss

• Semantics: so many topics
– Global variables
– Instance variables for shareable objects
– Class/Module specific shared data synchronization

• Constants, class variables
• Method table

– C API compatibility for thread safety
– Isolated Proc semantics and error detections
– Supports (syntax, runtime) to make immutable objects
– I/O? Current working directory?
– How to define moving protocol?
– What kind of “Transaction” is supported for shareable data?
– ObjectSpace.each_object?
– Signal handlers?
– …

• Implementation: we need to revisit all of MRI code to change the assumption “GVL/GIL can protect all”
– How to reduce internal locks for performance?
– How to make parallel GC?
– Rewrite MRI implementations to make them thread-safe (e.g.: Regex)
– Introduce new C APIs to accept “ec” parameters to remove TLS access overhead
– Really compatible with Ruby 2?
– …

Pros./Cons. Matrix
Process Guild Thread Auto-Fiber Fiber

Available Yes No Yes No Yes

Switch on
time

Yes Yes Yes No No

Switch on I/O Auto Auto Auto Auto No

Next target Auto Auto Auto Auto Specify

Parallel run Yes Yes No (on MRI) No No

Shared data N/A (mostly)

N/A
Everything Everything Everything

Comm. Hard Maybe
Easy

Easy Easy Easy

Programming
difficulty

Hard Easy Difficult Easy Easy

Debugging
difficulty

Easy? Maybe
Easy

Hard Maybe hard Easy

Today’s topic

• Difficulty of Thread programming

• New concurrent abstraction for Ruby 3 named Guild

– To overcome threading difficulties

• Introduce current Guild development progress

– Current “Semantics”

– Current API design and sample code we can run

– Preliminary performance evaluation

Thank you for your
attention

Koichi Sasada
<ko1@cookpad.com>

