Ruby’'s Concurrency
Management:
Now and Future

Koichi Sasada
ko1@cookpad.com g

RUBYCR JNF
AAAAAAAAAAA cookpad

Today’s talk

eSupported features
 Process
 Thread
e Fiber
eeatures under consideration
e Guild
e Auto-Fiber

Today’s talk

Available Yes
Switch on time Yes

Switch on /O Auto

Next target Auto
Parallel run Yes
Shared data N/A
Comm. Hard

Programming Hard
difficulty

Debugging Easy?
difficulty

Guild Auto-Fiber

NO Yes No Yes

Yes Yes NO No

Auto Auto Auto No

Auto Auto Auto Specify
Yes No (on MRI) No No
(mostly)N/A Everything Everything Everything
Maybe Easy Easy Easy Easy
Easy Difficult Easy Easy

Maybe Easy Hard

Maybe hard Easy

Koichi Sasada
http://atdot.net/~ko1/

* A programmer
« 20062012 Faculty
« 20122017 Heroku, Inc.

« 201/ Cookpadnc.

*Job: MRUbevelopment
 MRI: Matz Ruby Interprete

« Core parts COOkpad

e VM, Threads, GE@ic

Normal Ruby developer’s view

: | gigantum umeris insidentes
Ruby (Rails) ap Standing on the shoulders of giants

SO many gems

3dzOK | a wlAfazx L
~ RubyGemBundler

Ruby interpreter

Normal MRI developer’s view

Compile - -
(codegen

Interpret onRubyVM

Koichi’s job

Ruby (Ralls) ap

SO many gems
adzOK |a wlAfas LINEZ

Ruby interpreter
<OV

// Koich
«

Ruby3: Ruby3 has 3 goals

e Static type checking

eJustin-Time (JIT) complilation Q

Parallel execution w/ highly de
abstract concurrent model o

-
@

17/

Ruby3: Ruby3 has 3 goals

e For productivity
e Static checking

For performance
e Justin-Time (JIT) compilation
e Parallel execution w/ highly abstract
concurrent model

Concurrency

O Legmputer scienceconcurrencyis the decomposability
property of a program, algorithm, or problem into order
independent or partiallyordered components or unité! This
means that even If the concurrent units of the program,
algorithm, or problem are executed cof-order or in partial
order, the final outcome will remain the same. This allows for
narallel execution of the concurrent units, which can _
significantly improve overall speed of the execution in mult

A4 \\

orocessorand muitD2 NBE ae adSya oé

https://en.wikipedia.org/wiki/Concurrency (computer science)

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Concurrency_(computer_science)#cite_note-1
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

Concurrent and Parallel execution

Concurrent Task A— —
ex_ecutlon Task B —
Logicalconcep

Parallel

(and concurrent) Task A—
EXECUION 1) pu————————————

Physical concept

Ruby(MRI)support only concurrency

Concurrency
Why needed?

eEasy to write some kind of programs
e Download filesimultaneously
* Process web requesssmultaneously
e Agent simulation (assume computer games)
e Each agent has its own logics
* Run agentsimultaneously

Concurrency
Example: Downloader

post process
DOWmOad A ‘ wait for receving ﬁ
DOWmOad B ‘ wait for receving

post process

post process

D own IOad C ‘ wait for receving

We can write this kind of program/o concurrency support
but not simple, not easy

Downloader example
With concurrency support (Thread)

ts = URLs.map do| url |
Thread.new (url) do |u]
data = download(u)
File.write (u.to_fname , data)
end
end.each {| th| th.join }# walt

Downloader example
Without concurrency support

Serial execution
URLs.each do |u]

data = download(u)

File.write (u.to_fname , data)
end

Concurrency
Not concurrent case

post process
DOW”IOad A ‘ wait for receving ﬁ
post process
DOWmOad B ‘ wait for receving

Download C X FyR R2syt2l

Downloader example

Without concurrency support

Use select. Not so SIMPLE!!

fds = URLs.map do |u]
download fd (u)

end

while ready fds =select(fds)
ready fds.each {| fd |
File.write (e, r dh)p(

end

EXIsting concurrency supports on
Ruby (MRI)

Supported features by Ruby/MRI

Process
Thread
e1ber

Process

Traditional concurrency support

Process

e Use OS mulprocess
e Use fork on Unkkke systems

e Sharednothing

« Communicate with IPC (pipetc) such a$O.pipe
e Programming

e Difficult to manage processes and |IPC
* Debugging

e Easy becausafew synchronization bugs

Inter-process communication

/ Ruby process\ / Ruby process\
pipe ?
@ /\ Deserializ

Serialize N

. / . /

Inter-process communication
Example code

Traditional multi - process example

r, W= 1O.pipe

fork do
result_str = work_something.to_s
w.write result_str
w.close

end

puts r.read # wait for a result

Sophisticated libraries/frameworks for
process programming

*dRuby Distributed object for Ruby

eparallel gem: Parallel programming with
processes

eunicorn: Process based web application
server (master worker model w/ processes)

Thread

wdzo @8 Qa VI 0AGS 02y OdzZNNBy Oé & dzLJLJ2 NI

Thread

* Use Ruby managed threads
eThreadnew do ¢é end

e Sharedeverything
« Communication Is very easy

* Programming
e Easy to make, easy to communicate (at a glance)
e Difficult to make completely safe program

* Debugging
e Hard because of synchronization

MRI: Thread with Giant Lock (GIL)

chyfé || UOKNBFIR (1SSLAY
run in parallel)
Thread 1 Thread 1 \
CPU 1 | OS Thread 1
Thread2
OS Thread 2

Inter-thread communication
Easy to share objects

-~

-

Thread

~

L\

Ruby process

between threads very easill

~

We can share objects directI{

g Thread\

)

Inter-thread communication

v = QObject.new
$g = Object.new
Thread.new do

p [v, $d]
end

p [v, $d]

Thread programming
Synchronization is required

*Reading/writing dataimultaneously w/o
synchronization will cause serious problem
e Race condition
e Data race

Mutate shared objects
_ucky case

-

. N
Thread

A

/’

Ruby process

N4

o

SpeakerObject

XYIYS T

~
W

XISYRSNI T

/

G2 & dzl A ¢

oF

ZMB
J\Y

(1) Thread A tries to change the Spea

(er

Thread

Note: Yuki iIs my wife.

Mutate shared objects
_ucky case

-~

p
Threa

A

/’

Ruby process

d write
% A
XYyIYS I W

N4

o

SpeakerObject A

XISYRSNJ r/

OHU

Il OKIl y3Sa

P

~

Thread\

dz] % O
1

0 KS

{

y !
)/

Mutate shared objects
_ucky case

-

. N
Thread

A 4

write

>

Ruby process

-

SpeakerObject

$xy| Y S

c')ou

N4

I.I

~
W

XISYRSNI T

/

' OKIlI y3Sa

GKE 3

\
Thread
dz] ? Q

W Y §f S

C
\\

<
XJ¢
@)p)

Q\’

Mutate shared objects
_ucky case

-

. N
Thread

A

r

N4

.
_—

Ruby process

ead

o

SpeakerObject

XYyIYS T W

XISYRSNJ r/

(4) Complete.

read

P

A and B can read correct speaketr.

\
Thread
dz] ? Q

Yl

.y

Mutate shared objects
Problematic case

-~

Ruby process

~

4 N
Th’rAe\ad 4 SpeakerObject A Thread
- XyLYsS T LIJJ\ZYIVI B
XASYRSNI T | VY SQ
- /
(1) Thread A tries to change the Speaker
\\ / 02 &, dzl A€ O:ngl'_f//g()

Mutate shared objects
Problematic case

-

p
Threa

A

/’

Ruby process

d write
% A
XYyIYS I W

N4

o

SpeakerObject A

XISYRSNJ r/

OHU

Il OKIl y3Sa

P

~

Thread\

dz] % O
1

0 KS

{

y !
)/

Mutate shared objects
Problematic case

-~

. N
Thread

A

N4

Ruby process

4 SpeakerObject e
XYyIYS T W
XASYRSNI T | VY

\ /

(3) Before the changing,
B readincorrect data!!

\
Thread
? @

Note: Yukishouldbe female.

Inter-thread communication
Synchronization

*Require synchronization for shared data

e Mutex , Queue and so on
e UsuallyQueue is enough
* To prohibit simultaneous mutation

*\We need to keep consistency for each objects

Mutate shared objects
With lock

-

. N
Thread

A

Locked by A

Ruby process

[a)

/’

o

SpeakerObject

Xyl Y$

I.I

Y S LPJ\Z:;AB
XASYRSNI T | VY

N\ Thread

/

(1) Thread A tries to change the Speaker

N4

0 2

G dz] A é

Pa

6 FTSYlI L&L’uy

~

[2

Mutate shared objects
With lock

-

Locked by A

p
Threa

A

Ruby process

@Q

/’

o

SpeakerObject A

XYyIYS I W d1?g
xaéyﬁSNJi/w

OHU

N4

I OKIl y3ISa UuKS

~

Thread\

{

y !
)/

Mutate shared objects
With lock

/ Ruby process \

Locked by A

e R ‘ | %‘4 R
Thread @ | Speakerobject Sy Thread

A - XYyIYS T W d‘[EQ

XASYRSNIT | YYI SO
N Y,

(3) Before complete the changing,
K\ //

/B tries to read, buprohibited by a lock

Thread programming
Easy to share data: Good and Bad

Good Easy to communicate with threads

eBad: Too easy. Difficult to manage all of
them

* Mutation for shared data requires correct
synchronization

e Sometimes objects are shared implicitly
e Otherwise, It causes serious problems

“Why Threads Are A Bad Idea

(for most purposes)”
e Quoted from JohrOusterhout 1995 (about 20 years agdo)

What's Wrong With Threads?

wizards

)‘:ﬂﬂml all programmers S
“ Visual Basic programmers >

«— (C programmers —*
<« (C++ programumers —

oy
Threads programmers

Compare Process with Thread
. |pocess [Thread

Avalilable
Switch on time

Switch on I/O

Next target
Parallel run
Shared data

Communication
Programming difficulty

Debugging difficulty

Yes

Yes

Auto

Auto

Yes

N/A

Hard (highoverhead)
Hard

Easy?

Yes

Yes

Auto

Auto

No (on MRI)
Everything

Easy (lightweight)
Difficult

Hard

Fiber
User-defined context switching

-iber example
nfinite generator

flo= Fiber.new do
Fiber.yield a=b=1
loop{ a, b = Db, a+b

Fiber.yield a}
end
10.times{ p fib.resume

-iber example
nfinite generator

flo= Fiber.new do
/ Fiber.yield a=b=1
loop{ a, b = Db, a+b

2. Resume Fiber

4. Resume fiber

1. Fiber creation Flb ryleld a. (again)

6. Resume fiber
(again2)

5. Return to the

e n d 3. Return to the

parent fiber parent fiber

10.times{ p fib.resume

-iber example

nfinite generator resume

I
I resume

/ f| b — F | b er.new d O _: yield(1) (yield(a=1)#line

Fiber.yield a=b=1

€ yield(1) (yield(a=1)#line

loop{ a, b = b, atb ..
1. Fiber creation Flb ryleld a. :

:H‘ yield(1) (yield(a=2)#line

arent fiber

e n d 3. Return to the 5. Return to the resume
parent fiber !

P
10.times{ p fib.resume oy

]
main

Pal

t N2O OF yQU NBai
Not a Proc? the middle of block
main fib@1 fib@2 fib@3

a=0;b=1 'a=ob=1! i
fib = Proc.new { < |

a’ b — b’ a+b : }E 5|,b=b,a|+bE

a :I |
} :::all > |
0 fib.ca H=>1 i | (ab=b,atb |
0 fib.ca #=>1 retum am <~
n fib.ca H=> 2 cal .
0 fib.ca H#H=> 3 5 ;aﬁbaﬂ
0 fib.ca H=> 5 etuma=2, ' '

main fib@1 fib@2 fib@3

Proc (method) v.s. Fiber
. |Proc(method) Fiber

Start OK: call OK:Fiber#resume
Parameters OK: block (method) parameter OK: bloclparameters
Return OK: exitProc/method OK:exit Proc/method
Suspend NG:N/A OK:Fiberyield
Continue NG: N/A OK:Fiber#resume

‘ caller I callee
]
]

| | Fiber#resume |
v call ' >
>

| Fiber.yield (suspend)
[i <
, _return

| Fiber#resume (continue) }:
|]

D
|] |
. d-of-block "
caller callee € o i
e

-iber example

nner iterator to external iterator

fl1= Fiber.new do
2.times{| 1| Fiber.yield | }
end

0 fl.resume #=>0
0 fl.resume #=>1
0 f1l.resume #=> 2 # return value of #times
0 f1.resume #=> dead fiber called
(FiberError)

-iber example
nner iterator to external iterator

etc_passwd_ex_iter = Fiber.new do
open('/ etc / passwd'). each line {|line]
Fiber.yield line
]
end
P etc passwd ex Iter.resume #=>1 st [ine
P etc passwd ex Iter.resume #=>2 " [ine

e

-iber example
nner iterator to external iterator

make Enumerator
iter =open(/ etc /passwd'). each line

Enumerator#next use Fiber implicitly
p Iter.next #=>1 st [ine

p iter.next #=>2 " |ine

é

Fiber example
Agent simulation

characters << Fiber.new {

loop{ cat.move up ; Fiber.yield 1}
characters << Fiber.new {

loop{ dog.move left ; Fiber.yield 1}
é
loop{ cs.each {|le|] e.resume }, redraw}

Fiber example
Agent simulation

characters << Fiber.new {

you can specify complex rule for chars

loop{
cow.move_up ; ~1ber.yielo
cow.move _right ; Fiber.yield
cow.move_down ; Fiber.yielo
cow.move left ; Fiber.yielo

}

}

-iber example

Walit multlple IO ops with
0NI RAUAZ2Y I f
Y2ZRSNY epalfX ¢

Non-blocking 10 scheduler

scheduler workerl

worker2

| enque worker 1 and 2

' start (#resume)

Y

check 10(x) ready :
and not x is not readylj e ead(x) (yield)

a
S

: start (#resume)

: kIO)ady Q/ldeld 2

4 |
N‘J:F |- ‘ !Q_resulty(#resume) |

check 10(x) readyhl finish

and x is ready

]
]
i
]]]
' read_result(x) (#resume) ! !
]]
1 finish :
scheduler workerl worker2

-iber
Programming difficulty

e Good

* Synchronization for shared data Is not required
because oho unexpected switching

e Lightweightthan Processes and Threads

Bad

* We need to switch explicitly. For example,
. f 201 Ay 3 2LISNJI éichsbogalleé o
fibers

Comparison of existing supports

_

Available

Switch on time Yes
Switch on I/O Auto
Next target Auto
Parallel run Yes
Shared data N/A
Comm. Hard

Programming difficulty Hard
Debugging difficulty Easy?

Yes

Auto

Auto

No (on MRI)
Everything
Easy
Difficult
Hard

No

No
Specify
NO
Everything
Easy

Easy

Easy

Fiber: Brief history

«2007/05/23cont.c(for callcq
«2007/05/25 Fibermpl. [ruby-dev:30827]
«2007/05/28 Fiber introduced intoont.c
«2007/08/25 Fix Fiber spec

«2017 is 1® anniversary | introduced

Proposed concurrency

features

Guild
Auto-Fiber

Guild

Proposed concurrency support for Ruby 3

Key idea

Problem of multithread programming:
Easy to share mutable objects

ldea:
Prohibit sharing mutable objects

Our goal for Ruby 3

*\We need tkeep compatibilitywith Ruby 2.

*We can mak@arallel program o

Wed K 2 dzf RV Qlockayymdre. R S NJ

*\We can shareobjects withcopy, but copy
operation should be fast.

*\We should share immutable objects we can.

*\We canprovide slgl?cial_ob'ectiao share
mutalé)le objects lik&lojureif we really need
speed.

Guild: New concurrency abstraction

*Guild has at least one thread (and a thread
has at least one fiber)

Guild Guild
Thread Thread Thread o
I;l;er Sher Fiber
loer Flpel
J

Threads in different guilds can run in
Parallel

e Threads in different guilosan run in parallel

e Threads In a same guibaén not run in parallel
because of GVL (or GGL: Giant Guild Lock)

Acquire GGL

G1:T1) E—

Acquire GGL

mportant rule:
Mutable Objects have a membership

 All of mutable objects should belong omly
one Guildexclusively

*Guild can not touch objects belong to other
Guild 1 . Guild2
NG!!

@QQ [by Qi |-®§@/

(read/write)
\

Object membership

Only one guild can access mutable obj

M2 S R2y QU YySSR
(iIf Guild has only one thread)

Inter-guild communication

ed DdzA f R Y Yo/cotrimynyc&ebach guilds

 Two communication methods
1. Copy
2. Move (transfer _membership

Copy using Channel

channel.transfefol) 0l =channel.receive

02 02
03 03

O2:Data O2:Data

D :
~__ O3:lata O3:Data

Move using Channel

channel.transfer_membershifm1) ol =channel.receive

02

03

O2:Data

~_ O3:lata

Move using Channel

channel.transfer_membershim1) 0l =channel.receive

Guildl - Guild2 a

‘ channel>
From Guild1 perspective, MOVE ﬁ' -
transferred objects are invalidateg

Sharing immutable objects
We can share reference to immutable objects
channel.transfef(ol) 0l =channel.receive

O2:Data

Use-case 1: master — worker type

def fib(n) ... end
g_fib=Guild.newscript: %qg{
ch=Guild.default_channel

while n,return_ch=ch.receive I\/Iain ch Fibonacci
return_ch.transferfib(n)

end Guild i Guild
1 eturn_ch

n, return_ch

ch= Guild:Channel.new Answer of fib(n)
g_fib.transfe([3, ch])
p ch.receive NOTE: Making other Fibonacci guilds

you can compute fib(n) in parallel

Use-case 2: pipeline

result_ch= Guild:Channel.new
g_pipe3 =Guild.newscript: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3¢bj)
Guild.argy0].transfer_membershifobj)
end
}, argv. [result_ch)
g_pipe2 =Guild.newscript: %q{
while obj = Guild.default_channel.receive
obj = modify_obj20bj)
Guild.argy0].transfer_membershi(obj)
end
}, argv. [g_pipe3])
g_pipel =Guild.newscript: %q{ MOVG
while obj = Guild.default_channel.receive

obj = modify_obj16bj) Plpe 1 and modify

Guild.argy0].transfer_membershibj)

174

174

174

| argy [0_pive?) Guild

obj=SomecClass.new

g_pipel.transfer_membershipbj) Move
obj=result_ch.receive and mOdlfy

Compare with Process, Guild, Thread

___________|Process

Avalilable
Switch on time

Switch on I/O
Next target
Parallel run

Shared data
Comm.

Yes
Yes
Auto
Auto
Yes
N/A
Hard

Programming difficulty Hard

Debugging difficulty

Easy?

Guild

NoO

Yes

Auto

Auto

Yes

(mostly) N/A
Maybe Easy
Easy

Maybe Easy

Thread

Yes

Yes

Auto

Auto

No (on MRI)
Everything
Easy
Difficult
Hard

Auto Fiber

Another proposed concurrency support for Ruby 3

Problem of Fiber

Requires explicit switching

A CAOSNE Syl ofSa NI
programmer

[bProgrammersieedto write own scheduler

*\We need to manage blocking operations like
/O blocking

Auto Fiber proposal

https://bugs.rubylang.org/issues/13618

Feature #13618

1 k
P normalperson (Eric Wong) 74~ ARl END. 4H R0l CE3.
AT—RA: Open
Bk Normal
B33 -
FEE: ARSI E W

[ruby-core:81492]

https://bugs.ruby-lang.org/issues/13618

Auto Fiber proposal

Automatic schedule on I/O blocking

e Support Fiber scheduler
natively

52y QU YSSR U2 NG

scheduler

» Switch Fibers on all blocking [z

/O (and other ops)

* No need to change existing
programs

workerl

| start (#resume)

.)é;ready[j < readly) (yield

N

]
i read_resu

Itly) (#resume)

Y

Advantage and Disadvantage

e Advantage .
52y Q0 YSSR U2 Y2RATé SE
e Lightweight as a Fiber
e Safer than Threads (no preemption)

e Disadvantage

LY UNRRARBI SANIV2AVY A a U A O R
Thread programs
* Non atomic operations can intercept accidentally.

| KIy3aS GKS

Compare w/ Thread and (auto-)Fiber
_Auto Fiber

Available No Yes

Switch on time Yes No No

Switch on 1/O Auto Auto No

Next target Auto Auto Specify
Parallel run No (on MRI) No No
Shared data Everything Everything Everything
Comm. Easy Easy Easy
Programming difficulty Difficult Easy Easy

Debugging difficulty Hard Maybe hard Easy

Today’s talk

eSupported features
 Process
 Thread
e Fiber
eeatures under consideration
e Guild
e Auto-Fiber

Today’s talk

Available Yes
Switch on time Yes

Switch on /O Auto

Next target Auto
Parallel run Yes
Shared data N/A
Comm. Hard

Programming Hard
difficulty

Debugging Easy?
difficulty

Guild Auto-Fiber

NO Yes No Yes

Yes Yes NO No

Auto Auto Auto No

Auto Auto Auto Specify
Yes No (on MRI) No No
(mostly)N/A Everything Everything Everything
Maybe Easy Easy Easy Easy
Easy Difficult Easy Easy

Maybe Easy Hard

Maybe hard Easy

References

¢ F I b e r R U by Kal gz O 1 7 http://rubykaigi.org/2017/presentations/kohtml
¢ G U I I d R U byCO nQ O 1 6 https://www.youtube.com/watch?vmjzmUUQWQqco
o AU t0'f| b e r : Fe a.tu re #. 3 6 1 8 https:.//bugs.rubylang.org/issues/13618

http://rubykaigi.org/2017/presentations/ko1.html
https://www.youtube.com/watch?v=mjzmUUQWqco
https://bugs.ruby-lang.org/issues/13618

Thank you for your attention

Koichi Sasada
<kol@cookpad.com>

cookpad

