Lightweight
Method Dispatch
on MRI

Koichi Sasada heroku

EURUKO2015

Koichi Sasada

A programmer from Japan

Koichi is a Programmer

* MRl committer since 2007/01

* Original YARV developer since 2004/01
* YARV: Yet Another RubyVM
* Introduced into Ruby (MRI) 1.9.0 and later

* Generational/incremental GC for 2.x

PROGRAMMING

Language

“Why | wouldn’t use rails for a new company”
by Jared Friedman

G ¢ KuBy interpreter is just a volunteer effort. Between 2007
2012, there were a number of efforts to fix the interpreter and

make it fast (Rubiniusruby YAR\etc) But lacking
backers with staying power, the volunteers got

bored and some of the efforts witheredRuby is

still active and recent versmns are showing more promlse with
LISNF 2NX I yOSSE o0dzié AiQa oSSy |

Quoted from http://blog.jaredfriedman.com/2015/09/15/why-i-
wouldnt-use-rails-for-a-new-company/ (September 15, 2015)

http://blog.jaredfriedman.com/
http://blog.jaredfriedman.com/2015/09/15/why-i-wouldnt-use-rails-for-a-new-company/

Koichi is an Employee

heroku

Koichi is a member of Heroku Matz team

Mission
Design Ruby language
and improve quality of MRI

Heroku employs three full time Ruby core developers in Japan
named “Matz team”

Heroku Matz team

Matz 9

-

=, Designer/director of Ruby
,"f&g e

Quite activecommitter

- : | ."‘-‘
) R
= L

i N

1 Z

Kol Internal Hacker

Matz
Title collector

 He has so many (job) title
e Japanese teacher
e Chairman - Ruby Association
e Fellow - NaCl
e Chief architect, Ruby - Heroku
e Research institute fellow — Rakuten
e Chairman — NPO mruby Forum
e Senior researcher — Kadokawa Ascii Research Lab
e Visiting professor — Shimane University
* Honorable citizen (living) — Matsue city
* Honorable member — Nihon Ruby no Kai

e This margin is too narrow to contain

Nobu
Great Patch monster

Ruby’s bug

| > Fix Ruby

|> Break Ruby
|> And Fix Ruby

Nobu
Patch monster

marcanr‘rt,
Yalz

tende /ﬁ%
ko3
driB)‘Vam
3%ko1 akr
4945a 12%
4% 9%

Commit count of MRI

Nobu
- The Ruby Hero

Kol

EDD developer

Commit number of ko1 (last 3 years)

RubyKaigi

LN
(o]

2013

RubyConf

20

" RubyConf

2012

2013

15

Ruby 2.0

10
5
0

8/TT/€T0T

8/6/€10T
8/L/€10T
8/S/€10¢
8/€/€10¢

8/T/€10C

8/T1/210¢

8/6/T10C
8/L/TT0TC
8/s/t10¢
8/€/t10¢

8/1/710¢

8/TT/T10¢

8/6/110C
8/L/1T0T
8/S/110C
8/€/110¢

8/T/T10¢

8/TT/0T0C

Event Driven Development

EDD

Heroku Matz team and Ruby core team
Recent achievement

Ruby 2.2

Ruby 2.2
Syntax

e Symbol key of Hash literal can be quoted
{“foo-bar”: baz}

#=> {.“foo-bar” => baz}
#=> not {“foo-bar” => baz} like JSON

TRAP!!
Easy to misunderstand

(I wrote a wrong code, already...)

Ruby 2.2
Classes and Methods

 Some methods are introduces
e Kernel#itself
e String#unicode_normalize
 Method#curry
e Binding#receiver
* Enumerablef#tslice_after, slice _before
* File.birthtime
* Etc.nprocessors

Ruby 2.2
mprovements

* Improve GC
e Symbol GC
* Incremental GC

e Improved promotion algorithm
e Young objects promote after 4 GCs

e Fast keyword parameters
* Use frozen string literals if possible

Ruby 2.2
Symbol GC

before = Symbol.all_symbols.size
1 000 000.times{|i| i.to_s.to_sym} # Make 1M symbols

after = Symbol.all_symbols.size; p [before, after]

Ruby 2.1

#=>[2 378, 1 002 378]# nGiCed
Ruby 2.2

#=>[2 456, 2 456]@Ced J

Ruby 2.2
Symbol GC Issues history

* Ruby 2.2.Chas memory (object) leak problem
e Symbols has corresponding String objects
e Symbols are collected, but Strings are not collected! (leak)

* Ruby 2.2.1solved this problem!!

* However, 2.2.1 also has problem (rarely you encounter BUG at the end of process
[Bug #10933kK- not big issue, | want to believe)

* Ruby 2.2.2had solved [Bug #10933]!!

e However, patch was forgot to introduce!!

 Finally, Ruby 2.2.3 solved it!!
e Please use newest version!!

Ruby 2.2

dYSeé g 2NR

T O
v O U1 O

Execution time (sec)
o

-ast keyword parameters

LInOdyced id Raby 2.0 is useful, but slow!!

Evaluation on Ruby 2.1

foo6(1, 2, 3, 4, 5, 6) foo_kwo6(kl: 1, k2: 2, k3: 3, kd: 4, k5: 5, k6: ¢

Repeat 10M times

Ruby 2.2
-ast keyword parameters

Ruby 2.2 optimizes method dispatch with keyword parameters

20
O
% 15
£ 10 x14 faster!!
S
= 5
o
L% 0
foo6(1, 2, 3, 4, 5, 6) foo_kwo(kl: 1, k2: 2, k3: 3, k4: 4, k5: 5, k6: 6

Repeat 10M times

But still X2 times slower
B Ru by 2.1 ERuU by 2.2 compare with normal dispatch

Ruby 2.2
ncremental GC

Goal

Before |Ruby 2.1 |Incremerital [Ruby?2.2
Ruby 2.1 RGenGC |GC Gen+incGC
Throughput Low High Low High

Pause time Long Long Short Short

RGenGC from Ruby 2.1:
Micro-benchmark

3000
2500
Z 2000
£
< 1500
=
= 1000
500
0

x2.5 faster

no RGenGC

M total mark ™ total sweep

78686
16456
86576
SOv68
C1798
610€8
9¢86L
€E99L
obveEL
L¥20L
75049
198¢€9
89909
SLVLS
[4:147%
680TS
968LY
e0LvY
OLSLY
L1€BE
4%

Most of cases, FASTHR

Le6lE
8ELBC
SPSeSe
¢s¢edd
65161
99651
€eLLlT
08S6

0.018
0.016

RGenGC from Ruby 2.1

Pause time

£8€9
vele

N
= O
9 o
o

0.008

=
=
o
o

0.002

[(s]
o
o
o
ed

29

a—

J8s) awl} asn

pause time (rgengc)

pause time (raw)
(w/o rgengc)

Several peak&

0.018

0.016
0

0.008

(0@s) awiny esn

RGenGC from Ruby 2.1

Pause time

[(s]
o
o
o
ed

=
=
o
o

29

pause time (rgengc)

pause time (raw)

(w/o rgengc)

Short pause time)

0.018
0.016

Ruby 2.2 Incremental GC

~
—
) O
o

J8s) awl} asn

pause time (rincgc)

pause time (rgengc)

0.008

Heroku Matz team and Ruby core team
Next target is

Ruby 2.3

New magic comment:
Frozen string literal

-*- frozen -string - literal: true
p' foo'.frozen ? #=> true

There are many discussion.
Please join us.

http:/‘.flickr.com/photo/okyoey/842265722

Break

Ruby has so many

K K XK XK

[SGQa LX Feée KIy3a

Ruby has so many

K K XK XK

Ruby has so many

F* K XK

Ruby has so many

FU**

Ruby has so many

FU**

Ruby has so many

FUNC..

Or Methods

How many function/method call?

Importance of optimization
for “function/method dispatch”

Easy way to measure method dispatch count

at the beginning of your application
Sc = 0; TracePoint.trace(:call, :a_call){Sc+=1}
END{puts “call: #{Sc}"}

and your app...

Measuring method dispatch counts

 RDoc application

 Make RDoc documents from Ruby’s source
e 120M3 100M dispatches in 60 sec

e Tak(20, 10, 0) benchmark using recursive calls

 Famous benchmark
def tak x, y, z
y < x ? tak(tak(x-1, vy, z), tak(y-1, z, x), tak(z-1, x, y)) : z
end

 100M dispatches in 4.5 sec

Ruby has so many

FUNC..

Or Methods

Execution time of method

1 Method call execution l

Method Method body

dispatch (your code)
overhead

Today’s topic

100M method dispatches
Estimation

e 1sec/method dispatch #=> 100M sec
e Imsec/method dispatch #=>100M ms

e Tlusec/method dispatch #=> 100M us
e lusis 3000 clocks on 3GHz CPU

e 10nsec/method dispatch #=>1,000M ns
e 10ns is 30 clocks on 3GHz CPU

e Insec/method dispatch #=>100M nsec
e 1nsis 3 clocks on 3GHz CPU

=> about 3 years
=> about 1 days
=> 100 sec

=>]sec

=> (0.1 sec

Matter or not matter

* 1 sec method dispatch overhead in 60 sec application (rdoc)
#=>R 2 S dnAtfe

* 1 sec method dispatch overhead in 4 sec application (tak)
#=> big concern

* Maybe most of applications are located between these two
applications
 RDoc app has complex methods, so that dispatch cost is not a matter
e Tak app has a simple method, so that dispatch cost slows app directly

BTW
1sec / method dispatch

CAUTION:
Do not insert this line in your friends’ application

TracePoint.trace(:call){sleep 1}

Requirements
Revisit Ruby’s method dispatch

Simple method call

def simple foo(x)
end

foo(123)

Complex method call

protected # visibility

def complex _foo(m1, m2, 01=1, 02=2, *r, p1, p2, k1: 1, k2: 2, kr:, **kw, &b)
... # body

end

complex_foo(v1l, v2, *al, v3, v4, *a2, k1: 1, k2: 2, kr: 3, **kw, &block)

RubyQuiz: can you explain everything?

Complex method dispatch
Caller side

 Normal arguments: m(vl, v2)
eSplatting arguments: m(*al, *a2)
*Block argument: m(&block)

e Keyword arguments: m(k1: v1, k2: v2)

e Combination: m(v1, v2, *al, v3, *a2, k1: 1, &b)
* Ex) vl=v2=v3=al=a2=b=v1=nil
p(vl, v2, *al, v3, *a2, k1:vl, &b) #=>...?

Complex method dispatch
Callee side (defined methods)

* Parameters
 Mandatory parameters
e Optional parameters
* Rest parameter
* Post parameters

e Keyword parameters
e Optional keyword parameters
e Required keyword parameters
e Rest keyword parameters

* Block parameter or block passing directly

Complex method dispatch
Callee side (defined methods)
e Visibility

e Public

e Private
* Protected

RubyQuiz: can you explain everything?

Complex method dispatch
Dynamic features

e Classes can extend methods

* Open class
e “include”/"prepend”
 “extend” by instance objects

* Method missing
e Refinements (using)

Complex method dispatch
Calling interface

e Call by Ruby’s scripts
e Call by “send”

e Call by interpreters
e E.g: Implicit conversions using to_int, to_a, ...

 Call by C extensions

Design
What should we do?

Basic logic of method dispatch

1. Get class of receiver (klass’)
2. Search a method body’ from klass’

3. Check availability, visibility and an arity of passed
arguments

4. Construct a method frame with "body’
5. And continue VM execution

Basic logic of method dispatch

1.

Get class of receiver (klass’)

2.{SI NOK | YSUKKEED 602ReéQ TNR)Y

3.

4.
5.

Check availability, visibility and an arity of passed
arguments

Construct a method frame with "body’
And continue VM execution

Search a method body

e Search method from 'klass’

1. Search method table of klass’
1. if method 'body’ is found, return "body’
2. klass’ = super class of 'klass’ and repeat it

2. If no method is given, exceptional flow
* In Ruby language, ‘method_missing’ will be called

BasicObject

Kernel

Each Class has
method table

‘D lsoy

m1l B ml
m?2 B m2

D |Body _

x1 B_x1

Optimization
Method caching

* Eliminate method search overhead
e Reuse search result BasicObject
* |nvalidate cache entry with VM stat

* Two level method caching Kernel

* Inline method caching (from Ruby 1.9.0)
e Global method caching (from the beginning of Ruby)

method search class, id => body
N

class, id => body

class => miss miss

Inline cache Global cache naive search
1 element per call-site hash table

Optimization
Method table (from Ruby 2.3)

* Make special Hash table for method table
e To make search faster
e To make more compact (lower memory usage, about 1/2)
e https://bugs.ruby-lang.org/issues/11420

* Introduce method ID - method body related table

e Ruby 2.2 and before use common table data structure shared with Hash
objects. It is general and many features (ex: ordering), but over spec only for
this purpose.

https://bugs.ruby-lang.org/issues/11420

Basic logic of method dispatch

1. Get class of receiver (klass’)
2. Search a method body’ from klass’

3. Check availability, visibility and an arity of passed
arguments

4. Construct a method frame with "body’
5. And continue VM execution

Check the availability, visibility and an arity

 Method body checking
* Not found - call method_missing

e Visibility checking
* Not found - call method_missing

e Arity checking
 Not matched - raise ArgumentError

Optimization (from Ruby 2.0)
Caching checking results into inline method cache

1sttime 2"d time

1. Search method Cache the 1. Search method

2. Checks 5“““”“‘*5“” 2 Checks [Skip!]
3. Construct frame 3. Construct frame

4. Continue method 4. Continue method

Basic logic of method dispatch

1. Get class of receiver (klass’)
2. Search a method body’ from klass’

3. Check availability, visibility and an arity of passed
arguments

4. | 2VAUNHzZOU | YSUK2Z2R FTNIYS 6A

5. And continue VM execution

Construct a method frame

e Each method needs a method frameto maintain:
e Local variables (includes method parameters)
e Passed block information
e Current method information (used by backtrace and so on)

V

flipflo

p
data

$~

Value stack

Control frame

rb_thread_t::cfp
points current control frame

foo block

—

A4

iseq

> bariseq

foo iseq

per method

top iseq

def foo
bar{

}
end
def bar
yield
end
foo

Ruby 1.9 VM stacks structure

62

Local variables with complex passed
arguments and method parameters

complex method parameters

def complex foo(m1, m2, 01=1, 02=2, *r, p1, p2, k1: 1, k2: 2, kr:, **kw, &b)
... # body

end

complex method dispatch
complex foo(vl, v2, *al, v3, v4, *a2, kl1: 1, k2: 2, kr: 3, **kw, &block)

Basic logic of method dispatch

1. Get class of receiver (klass’)
2. Search a method body’ from klass’

3. Check availability, visibility and an arity of passed
arguments

4. | 2VAUNHzZOU | YSUK2Z2R FTNIYS 6A

5. And continue VM execution

Detailed logic of method dispatch

1. Get class of receiver (klass’)
2. Search a method "body’ from “klass’

3. Check availability, visibility and an arity of passed arguments

1. Check arity (expected args # and given args #) and process
1. Post arguments

2. Optional arguments

3. Rest argument

4. Keyword arguments
5.
2

Block argument

4. | yauNdzOu | YSUK2ZR FNJFYS
1. Push new control frame

Store 'PC’ and 'SP’ to continue after method returning

Store "block information’

Store “defined class’

Store bytecode info (iseq)

. Store recv as self

5. And continue VM execution

GoA W

g A

l.j

K

Optimization (from Ruby 1.9.0)
Specialized instruction

* Make special VM instruction for several methods

.+) W, */ /1

def opt_plus(recv, obj)
if recv.is_a(Fixnum) and obij.is_a(Fixnum) and
Fixnum#+ is not redefined
return Fixnum.plus(recv, obj)
else
return recv.send(:+, obj) # not prepared
end
end

Keyword parameters from Ruby 2.0

def with keywords

def foo(a, b, keyl: 1, key2: 2)
é

end

call with keywords

foo(1, 2, keyl: 123, key2: 456)

Slow keyword parameters

@ Evaluation on Ruby 2.1

T.ET . x30 slower

+ 10

C

O 5

=

8 0

Y foo6(1, 2, 3, 4, 5, 6) foo_kw6(kl: 1, k2: 2, k3: 3, k4: 4.
L k5: 5, k6: 6)

Repeat 10M times

Why slow, compare with normal parameters?

1.Hash creation
2.Hash access

def foo(h =

def foo(k1: v1, k2: v2) k1= h.tetch (k1,v1)
é k2= h.fetch (:

end e 2. Hash access
foo(kl: 1, k2: 2) end

foo({Kkl: 1, k2: 2})

1. Hash creation

Optimization (from Ruby 2.2)
Fast Keyword parameters

e Key technique
— Pass “a keyword list”
nstead of a Hash object

Check “Evolution of Keyword parameters” at Rubyconf portugal'l5
http://www.atdot.net/~ko1l/activities/2015 RubyConfPortgual.pdf

http://www.atdot.net/~ko1/activities/2015_RubyConfPortgual.pdf

Result: Fast keyword parameters (Ruby 2.2.0)

Ruby 2.2 optimizes method dispatch with keyword parameters

g2 x14 faster!!

E 0 (best case)

S 5

2

ks foo6(1, 2, 3, 4, 5, 6) foo kw6(k1l: 1, k2: 2, k3: 3, k4: 4, k¢
5, k6: 6)

Repeat 10M times

B Ruby 2.1 mRuby 2.2

But still x2 times slower
compare with normal dispatch

Another |dea:
90% of methods are like simple method calls

Simple method call
def simple foo(x)

end

foo(123)

Optimization (from Ruby 2.3)
Caching checking results into inline method cache

1sttime 2nd time
1. Search method Cache the 1. Search method
2. Checks checking result 2 Checks
3. Construct frame
3. Construct frame 1. Simple code setup
4. Continue method e Callinline code for 0 param, 0 locals

e Callinline code for 0 param, 1 locals
* Callinline code for 1 param, 0 locals

2. Complex code setup
4. Continue method

[idS]

Optimization (from Ruby 2.3)
Caching checking results into inline method cache

* Make dispatch function
e Base C function: dispatch(..., param, local){ /* setup frame */ }
 Make several inline codes
e dispatch_0_0(...){dispatch(.., 0, 0);}
e dispatch_0_1(...){dispatch(.., 0, 1);}
e dispatch 1 _0(...){dispatch(.., 1, 0);}
e dispatch 0 _1(...){dispatch(.., 0, 1);}

* And call inline dispatch function (if it is possible)

Evaluation
Dispatch same method (hit inline cache)

vm2_method* (call 48 M calls)
1.5 1.367 1.35 1.299

)
a 1.058
o 1

£

5 0.5

5

@

% 0

trunk modified

Evaluation
Dispatch different methods (miss inline cache)

vm2_poly _method* (48M dispatches)

=25 5039 2.187 2.17 2.16 2.278
a2

§ 1.5

c 1

O

5 0.5

@)

% 0

trunk modified

Evaluation
Tak function

app_tak
1
)
3038 0.789 0.762 0.767 0.732 0 6ou
Q
£ 0.6
=
S 0.4
5
o 0.2
h
0

200 trunk modified

Rough estimation

e Hit inline cache: about 1.1 sec on 48M call
—> 23ns / call
— 78 clocks on 3.4GHz CPU

e Miss inline cache: about 2.3 sec on 48M call
—> 48ns / call
— 163 clocks on 3.4GHz

Ssummary

 Method dispatch is key feature for Ruby
*Ruby’s method has rich features

* Many optimization techniques on MRI are
invented by many people

Ssummary

Ruby/MRI is getting
better and better.

Thank you for your attention

Koichi Sasada

<kol@heroku.com>

M @

h| heroku i

